On effective transport coefficients in PEM fuel cell electrodes: Anisotropy of the porous transport layers

Abstract This paper reviews the approach taken in the literature to model the effective transport coefficients – mass diffusivity, electrical conductivity, thermal conductivity and hydraulic permeability – of carbon-fibre based porous electrode of polymer electrolyte membrane fuel cells (PEMFCs). It is concluded that current PEMFC model do not account for the inherent anisotropic microstructure of the fibrous electrodes. Simulations using a 2-D PEMFC cathode model show that neglecting the anisotropic nature and associated transport coefficients of the porous electrodes significantly influences both the nature and the magnitude of the model predictions. This emphasizes the need to appropriately characterize the relevant anisotropic properties of the fibrous electrode.

[1]  Brant A. Peppley,et al.  A Review of Mathematical Models for Hydrogen and Direct Methanol Polymer Electrolyte Membrane Fuel Cells , 2004 .

[2]  K. Karan,et al.  An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters , 2005 .

[3]  Frano Barbir,et al.  Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells , 2005 .

[4]  Mark Pritzker,et al.  Capillary pressure and hydrophilic porosity in gas diffusion layers for polymer electrolyte fuel cells , 2006 .

[5]  Signe Kjelstrup,et al.  Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell , 2004 .

[6]  Ned Djilali,et al.  A 3D, Multiphase, Multicomponent Model of the Cathode and Anode of a PEM Fuel Cell , 2003 .

[7]  S. V. Sotirchos,et al.  Ordinary and transition regime diffusion in random fiber structures , 1993 .

[8]  Jin Hyun Nam,et al.  Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium , 2003 .

[9]  S. V. Sotirchos,et al.  Effective Kundsen diffusivities in structures of randomly overlapping fibers , 1991 .

[10]  R. Pitchumani,et al.  MEASUREMENT AND PREDICTION OF ELECTRICAL CONTACT RESISTANCE BETWEEN GAS DIFFUSION LAYERS AND BIPOLAR PLATE FOR APPLICATIONS TO PEM FUEL CELLS , 2004 .

[11]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[12]  J. Pharoah On the permeability of gas diffusion media used in PEM fuel cells , 2005 .

[13]  Charles W. Tobias,et al.  On the Conductivity of Dispersions , 1959 .

[14]  Ned Djilali,et al.  CFD-based modelling of proton exchange membrane fuel cells , 2005 .

[15]  Brant A. Peppley,et al.  Modeling the Influence of GDL and flow-field plate parameters on the reaction distribution in the PEMFC cathode catalyst layer , 2005 .

[16]  Chao-Yang Wang,et al.  Electron Transport in PEFCs , 2004 .

[17]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .