Metal-organic frameworks for direct electrochemical applications

Abstract Metal-organic frameworks are a class of functional porous materials. In recent years, metal-organic frameworks have become a hot research topic in the field of electrochemistry because of their controllable morphology, abundant pores, high specific surface area and versatility. Herein, we summarize the latest developments of metal-organic frameworks and metal-organic framework composites as electrode materials or catalysts for electrochemical applications such as batteries, supercapacitors, electrocatalysts and electrochemical sensors. The morphological and electrochemical properties of these promising metal-organic framework materials for their future development are discussed. Finally, based on the reported literature, we propose the future direction of metal-organic frameworks and metal-organic framework composites in the field of electrochemistry.

[1]  Jie Yu,et al.  Cu-Hemin Metal-Organic-Frameworks/Chitosan-Reduced Graphene Oxide Nanocomposites with Peroxidase-Like Bioactivity for Electrochemical Sensing , 2016 .

[2]  Shuoyu Wang,et al.  A luminescent Terbium-Succinate MOF thin film fabricated by electrodeposition for sensing of Cu2+ in aqueous environment , 2015 .

[3]  Yan Yu,et al.  N,S co-doped 3D mesoporous carbon–Co3Si2O5(OH)4 architectures for high-performance flexible pseudo-solid-state supercapacitors , 2017 .

[4]  F. Marken,et al.  Metal@MOF Materials in Electroanalysis: Silver-Enhanced Oxidation Reactivity Towards Nitrophenols Adsorbed into a Zinc Metal Organic Framework—Ag@MOF-5(Zn) , 2016 .

[5]  P. Balaya,et al.  Lithium storage in a metal organic framework with diamondoid topology – a case study on metal formates , 2010 .

[6]  Shasha Zheng,et al.  Prussian blue and its derivatives as electrode materials for electrochemical energy storage , 2017 .

[7]  Kunio Awaga,et al.  Monitoring the solid-state electrochemistry of Cu(2,7-AQDC) (AQDC = anthraquinone dicarboxylate) in a lithium battery: coexistence of metal and ligand redox activities in a metal-organic framework. , 2014, Journal of the American Chemical Society.

[8]  Hao Wang,et al.  Synthesis of an ε-MnO2/metal–organic-framework composite and its electrocatalysis towards oxygen reduction reaction in an alkaline electrolyte , 2015 .

[9]  Qiang Xu,et al.  Porous metal-organic frameworks as platforms for functional applications. , 2011, Chemical communications.

[10]  Daojun Zhang,et al.  3D porous metal-organic framework as an efficient electrocatalyst for nonenzymatic sensing application. , 2015, Talanta.

[11]  Jing Han,et al.  Rare Co/Fe-MOFs exhibiting high catalytic activity in electrochemical aptasensors for ultrasensitive detection of ochratoxin A. , 2017, Chemical communications.

[12]  Hai-Long Jiang,et al.  Chemical Sensors Based on Metal-Organic Frameworks. , 2016, ChemPlusChem.

[13]  Guoquan Zhang,et al.  Co(II)-salen complex encapsulated into MIL-100(Cr) for electrocatalytic reduction of oxygen , 2014 .

[14]  H. Naderi,et al.  Application of Ni/Co-based metal–organic frameworks (MOFs) as an advanced electrode material for supercapacitors , 2016 .

[15]  B. Lotsch,et al.  Synthetic routes toward MOF nanomorphologies , 2012 .

[16]  F. Ke,et al.  Metal-organic frameworks for lithium ion batteries and supercapacitors , 2015 .

[17]  M. Doublet,et al.  Design of Electrode Materials for Lithium-Ion Batteries: The Example of Metal−Organic Frameworks , 2010 .

[18]  K. Ho,et al.  Inkjet-printed porphyrinic metal–organic framework thin films for electrocatalysis , 2016 .

[19]  K. Ho,et al.  Metal-organic framework/sulfonated polythiophene on carbon cloth as a flexible counter electrode for dye-sensitized solar cells , 2017 .

[20]  Yanli Zhou,et al.  The Applications of Metal−Organic Frameworks in Electrochemical Sensors , 2018 .

[21]  Gang Chen,et al.  Layered nickel metal–organic framework for high performance alkaline battery-supercapacitor hybrid devices , 2016 .

[22]  Gang Xu,et al.  Conductive Metal–Organic Framework Nanowire Array Electrodes for High‐Performance Solid‐State Supercapacitors , 2017 .

[23]  Ziqi Wang,et al.  Mixed-Metal-Organic Framework with Effective Lewis Acidic Sites for Sulfur Confinement in High-Performance Lithium-Sulfur Batteries. , 2015, ACS applied materials & interfaces.

[24]  M. Roushani,et al.  Electroanalytical sensing of Cd2+ based on metal–organic framework modified carbon paste electrode , 2016 .

[25]  C. Li,et al.  The organic-moiety-dominated Li+ intercalation/deintercalation mechanism of a cobalt-based metal–organic framework , 2016 .

[26]  Ki‐Hyun Kim,et al.  Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates , 2016 .

[27]  R. Dryfe,et al.  Electrochemical deposition of zeolitic imidazolate framework electrode coatings for supercapacitor electrodes , 2016 .

[28]  Shuiliang Chen,et al.  Microperoxidase-11@PCN-333 (Al)/three-dimensional macroporous carbon electrode for sensing hydrogen peroxide , 2017 .

[29]  Jie Zhu,et al.  Study of Electrocatalytic Properties of Metal-Organic Framework PCN-223 for the Oxygen Reduction Reaction. , 2017, ACS applied materials & interfaces.

[30]  Amy J. Cairns,et al.  Tunable Rare Earth fcu-MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction. , 2015, Journal of the American Chemical Society.

[31]  A. Stein,et al.  Mechanism of electrochemical lithiation of a metal-organic framework without redox-active nodes. , 2016, The Journal of chemical physics.

[32]  Ping Wu,et al.  POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage , 2017 .

[33]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[34]  Syamantak Roy,et al.  Flexible MOF–aminoclay nanocomposites showing tunable stepwise/gated sorption for C2H2, CO2 and separation for CO2/N2 and CO2/CH4 , 2017 .

[35]  Huan Pang,et al.  Zeolitic Imidazolate Framework‐67 Rhombic Dodecahedral Microcrystals with Porous {110} Facets As a New Electrocatalyst for Sensing Glutathione , 2015 .

[36]  K. Akhbari,et al.  Synthesis of nanomaterials with desirable morphologies from metal-organic frameworks for various applications , 2016 .

[37]  Chengxin Wang,et al.  Metal-Organic Frameworks Triggered High-Efficiency Li storage in Fe-Based Polyhedral Nanorods for Lithium-ion Batteries , 2017 .

[38]  Q. Lin,et al.  Metal-organic frameworks based on rigid ligands as separator membranes in supercapacitor. , 2015, Dalton transactions.

[39]  Yang Shao-Horn,et al.  Lithium–oxygen batteries: bridging mechanistic understanding and battery performance , 2013 .

[40]  M. A. Kulandainathan,et al.  Innovative high performing metal organic framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries , 2014 .

[41]  J. Shang,et al.  Triphenylamine-Based Metal-Organic Frameworks as Cathode Materials in Lithium-Ion Batteries with Coexistence of Redox Active Sites, High Working Voltage, and High Rate Stability. , 2016, ACS applied materials & interfaces.

[42]  H. Kitagawa,et al.  Ionic liquid transported into metal–organic frameworks , 2016 .

[43]  Kai Zhang,et al.  Recent Advances and Prospects of Cathode Materials for Sodium‐Ion Batteries , 2015, Advanced materials.

[44]  C. Li,et al.  Cobalt-based metal organic framework with superior lithium anodic performance , 2016 .

[45]  V. Ganesan,et al.  Electrochemical investigation of gold nanoparticles incorporated zinc based metal-organic framework for selective recognition of nitrite and nitrobenzene , 2016 .

[46]  Gengfeng Zheng,et al.  A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage. , 2015, Journal of colloid and interface science.

[47]  Prakash Sengodu,et al.  Easy synthesis of microporous/mesoporous cobalt organic framework as binder less lithium-ion battery electrode , 2017 .

[48]  K. Loh,et al.  A Graphene Oxide and Copper‐Centered Metal Organic Framework Composite as a Tri‐Functional Catalyst for HER, OER, and ORR , 2013 .

[49]  Lin Cui,et al.  Design and sensing applications of metal–organic framework composites , 2014 .

[50]  Ling Wang,et al.  Fabrication of Metal Molybdate Micro/Nanomaterials for Electrochemical Energy Storage. , 2017, Small.

[51]  Shichao Wu,et al.  A long-life lithium–sulphur battery by integrating zinc–organic framework based separator , 2016 .

[52]  J. Tarascon,et al.  Influence of the Benzoquinone Sorption on the Structure and Electrochemical Performance of the MIL-53(Fe) Hybrid Porous Material in a Lithium-Ion Battery , 2009 .

[53]  Prashanth Jampani Hanumantha,et al.  Understanding the Origin of Irreversible Capacity loss in Non-Carbonized Carbonate − based Metal Organic Framework (MOF) Sulfur hosts for Lithium − Sulfur battery , 2017 .

[54]  Guohua Chen,et al.  Graphene-Wrapped Chromium-MOF(MIL-101)/Sulfur Composite for Performance Improvement of High-Rate Rechargeable Li-S Batteries , 2014 .

[55]  Ludovic F. Dumée,et al.  Metal organic framework based catalysts for CO2 conversion , 2017 .

[56]  S. Maiti,et al.  Cu-3(1,3,5-benzenetricarboxylate)(2) metal-organic framework: A promising anode material for lithium-ion battery , 2016 .

[57]  X. Zheng,et al.  Metal–organic frameworks: Promising materials for enhancing electrochemical properties of nanostructured Zn2SnO4 anode in Li-ion batteries , 2012 .

[58]  Wenping Sun,et al.  Hybrid 2D Dual‐Metal–Organic Frameworks for Enhanced Water Oxidation Catalysis , 2018 .

[59]  M. Sawangphruk,et al.  Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper , 2015 .

[60]  Xiao Xiao,et al.  Transition‐Metal (Fe, Co, Ni) Based Metal‐Organic Frameworks for Electrochemical Energy Storage , 2017 .

[61]  Tinglin Huang,et al.  Exploiting multi-function Metal-Organic Framework nanocomposite Ag@Zn-TSA as highly efficient immobilization matrixes for sensitive electrochemical biosensing. , 2016, Analytica chimica acta.

[62]  Y. Lan,et al.  A microporous Cu-MOF with optimized open metal sites and pore spaces for high gas storage and active chemical fixation of CO2. , 2016, Chemical communications.

[63]  Keumnam Cho,et al.  Copper-Organic Framework Fabricated with CuS Nanoparticles: Synthesis, Electrical Conductivity, and Electrocatalytic Activities for Oxygen Reduction Reaction. , 2016, Angewandte Chemie.

[64]  S. Xi,et al.  Polyoxometalate immobilized in MIL-101(Cr) as an efficient catalyst for water oxidation , 2016 .

[65]  Jun Chen,et al.  A novel non-invasive detection method for the FGFR3 gene mutation in maternal plasma for a fetal achondroplasia diagnosis based on signal amplification by hemin-MOFs/PtNPs. , 2017, Biosensors & bioelectronics.

[66]  Wei Huang,et al.  Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal-Organic Frameworks and Ti3C2Tx Nanosheets for Electrocatalytic Oxygen Evolution. , 2017, ACS nano.

[67]  Qin Xu,et al.  Ni and NiO Nanoparticles Decorated Metal-Organic Framework Nanosheets: Facile Synthesis and High-Performance Nonenzymatic Glucose Detection in Human Serum. , 2017, ACS applied materials & interfaces.

[68]  Hong Wang,et al.  Metal-organic frameworks as heterogeneous catalysts for electrocatalytic oxidative carbonylation of methanol to dimethyl carbonate , 2013 .

[69]  Ruijun Wu,et al.  MNPs@anionic MOFs/ERGO with the size selectivity for the electrochemical determination of H2O2 released from living cells. , 2018, Biosensors & bioelectronics.

[70]  Y. Zenitani,et al.  Electrochemical Reduction of Carbon Dioxide Using a Copper Rubeanate Metal Organic Framework , 2012 .

[71]  Shasha Zheng,et al.  Ultrathin two-dimensional cobalt–organic framework nanosheets for high-performance electrocatalytic oxygen evolution , 2018 .

[72]  F. Maillard,et al.  Insights into the mechanism of electrocatalysis of the oxygen reduction reaction by a porphyrinic metal organic framework. , 2017, Chemical communications.

[73]  Weiyang Li,et al.  Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application , 2018 .

[74]  Xiangheng Niu,et al.  Significantly Improved Electrocatalytic Activity of Copper‐Based Structures that Evolve from a Metal‐Organic Framework Induced by Cathodization Treatment , 2017 .

[75]  C. Li,et al.  Reversible lithium storage in manganese and cobalt 1,2,4,5-benzenetetracarboxylate metal–organic framework with high capacity , 2016 .

[76]  Jiyuan Liang,et al.  Metal–organic frameworks based on halogen-bridged dinuclear-Cu-nodes as promising materials for high performance supercapacitor electrodes , 2017 .

[77]  Nathan D. Ricke,et al.  Mechanistic Evidence for Ligand-Centered Electrocatalytic Oxygen Reduction with the Conductive MOF Ni3(hexaiminotriphenylene)2 , 2017 .

[78]  H Zhao,et al.  2D zirconium-based metal-organic framework nanosheets for highly sensitive detection of mucin 1: consistency between electrochemical and surface plasmon resonance methods , 2017 .

[79]  Guoxiu Wang,et al.  Cobalt-Based Layered Metal-Organic Framework as an Ultrahigh Capacity Supercapacitor Electrode Material. , 2016, ACS applied materials & interfaces.

[80]  Yusuke Yamauchi,et al.  Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications. , 2016, Accounts of chemical research.

[81]  Jing Chen,et al.  Copper metal-organic framework nanocrystal for plane effect nonenzymatic electro-catalytic activity of glucose. , 2014, Nanoscale.

[82]  Hongjiang Liu,et al.  Nickel metal-organic framework nanoparticles as electrode materials for Li-ion batteries and supercapacitors , 2017, Journal of Solid State Electrochemistry.

[83]  R. Luque,et al.  Controllable design of tunable nanostructures inside metal-organic frameworks. , 2017, Chemical Society reviews.

[84]  Juan-Yu Yang,et al.  A Novel CuxO Nanoparticles@ZIF-8 Composite Derived from Core-Shell Metal-Organic Frameworks for Highly Selective Electrochemical Sensing of Hydrogen Peroxide. , 2016, ACS applied materials & interfaces.

[85]  Weisheng Liu,et al.  An electrochemical sensor for H2O2 based on a new Co-metal-organic framework modified electrode , 2015 .

[86]  Wei Li,et al.  Rational design of a metal–organic framework host for sulfur storage in fast, long-cycle Li–S batteries , 2014 .

[87]  Gérard Férey,et al.  Cathode composites for Li-S batteries via the use of oxygenated porous architectures. , 2011, Journal of the American Chemical Society.

[88]  David M. Reed,et al.  Metal-Organic Frameworks as Highly Active Electrocatalysts for High-Energy Density, Aqueous Zinc-Polyiodide Redox Flow Batteries. , 2016, Nano letters.

[89]  Guoxiu Wang,et al.  Manganese-based layered coordination polymer: synthesis, structural characterization, magnetic property, and electrochemical performance in lithium-ion batteries. , 2013, Inorganic chemistry.

[90]  F. Gao,et al.  Graphene Oxide Directed One-Step Synthesis of Flowerlike Graphene@HKUST-1 for Enzyme-Free Detection of Hydrogen Peroxide in Biological Samples. , 2016, ACS applied materials & interfaces.

[91]  Kyung Min Choi,et al.  Supercapacitors of nanocrystalline metal-organic frameworks. , 2014, ACS nano.

[92]  Chao Yang,et al.  Facile synthesis of novel metal-organic nickel hydroxide nanorods for high performance supercapacitor , 2016 .

[93]  Y. Bando,et al.  Three-Dimensional Networked Metal-Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors. , 2017, ACS applied materials & interfaces.

[94]  Jinqing Wang,et al.  Graphene oxide-templated growth of MOFs with enhanced lithium-storage properties , 2017 .

[95]  Zhijie Chen,et al.  A supermolecular building layer approach for gas separation and storage applications: the eea and rtl MOF platforms for CO2 capture and hydrocarbon separation , 2015 .

[96]  Kartik Maity,et al.  Co(II)-Doped Cd-MOF as an Efficient Water Oxidation Catalyst: Doubly Interpenetrated Boron Nitride Network with the Encapsulation of Free Ligand Containing Pyridine Moieties. , 2017, ACS applied materials & interfaces.

[97]  G. Han,et al.  Flexible solid-state supercapacitor fabricated by metal-organic framework/graphene oxide hybrid interconnected with PEDOT , 2016 .

[98]  Ji‐Guang Zhang,et al.  Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries. , 2014, Nano letters.

[99]  Xian‐Wen Wei,et al.  Electrocatalytic four-electron reduction of oxygen with Copper (II)-based metal-organic frameworks , 2012 .

[100]  王亮,et al.  MOF(Fe)的制备及其氧气还原催化性能 , 2014 .

[101]  Xiaobing Lou,et al.  Remarkable Improvement in the Lithium Storage Property of Co2(OH)2BDC MOF by Covalent Stitching to Graphene and the Redox Chemistry Boosted by Delocalized Electron Spins , 2017 .

[102]  J. Tarascon,et al.  Mixed-valence li/fe-based metal-organic frameworks with both reversible redox and sorption properties. , 2007, Angewandte Chemie.

[103]  Lirong Yang,et al.  Highly Selective Bifunctional Luminescent Sensor toward Nitrobenzene and Cu2+ Ion Based on Microporous Metal-Organic Frameworks: Synthesis, Structures, and Properties. , 2017, ACS applied materials & interfaces.

[104]  Jun Chen,et al.  Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O(1,3,5-benzenetribenzoate)2 , 2006 .

[105]  Xiao Xiao,et al.  Facile synthesis of ultrathin Ni-MOF nanobelts for high-efficiency determination of glucose in human serum. , 2017, Journal of materials chemistry. B.

[106]  J. Fraser Stoddart,et al.  Metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism , 2013 .

[107]  Hua Zhang,et al.  Two‐Dimensional Metal–Organic Framework Nanosheets , 2017 .

[108]  Hao Wang,et al.  A metal–organic-framework/carbon composite with enhanced bifunctional electrocatalytic activities towards oxygen reduction/evolution reactions , 2017 .

[109]  Yutao Li,et al.  A nickel-based metal-organic framework: A novel optimized anode material for Li-ion batteries , 2015 .

[110]  B. Tang,et al.  Facile synthesis and supercapacitive properties of Zr-metal organic frameworks (UiO-66) , 2015 .

[111]  Qun Xu,et al.  2D MOF Nanoflake-Assembled Spherical Microstructures for Enhanced Supercapacitor and Electrocatalysis Performances , 2017, Nano-Micro Letters.

[112]  Qiang Xu,et al.  Metal–organic frameworks as platforms for clean energy , 2013 .

[113]  Shasha Zheng,et al.  Ruthenium based materials as electrode materials for supercapacitors , 2018 .

[114]  Qiang Xu,et al.  Functional materials derived from open framework templates/precursors: synthesis and applications , 2014 .

[115]  Huanting Wang,et al.  An ordered ZIF-8-derived layered double hydroxide hollow nanoparticles-nanoflake array for high efficiency energy storage , 2016 .

[116]  Mingdeng Wei,et al.  Layered Structural Co-Based MOF with Conductive Network Frames as a New Supercapacitor Electrode. , 2017, Chemistry.

[117]  Wei Li,et al.  The impact of the particle size of a metal–organic framework for sulfur storage in Li–S batteries , 2015 .

[118]  Jia-Na Lin,et al.  Lead-Based Metal-Organic Framework with Stable Lithium Anodic Performance. , 2017, Inorganic chemistry.

[119]  K. Awaga,et al.  Discovery of a “Bipolar Charging” Mechanism in the Solid-State Electrochemical Process of a Flexible Metal–Organic Framework , 2016 .

[120]  Jing Li,et al.  Luminescent metal-organic frameworks for chemical sensing and explosive detection. , 2014, Chemical Society reviews.

[121]  Fei‐Long Li,et al.  Nanoscale Trimetallic Metal-Organic Frameworks Enable Efficient Oxygen Evolution Electrocatalysis. , 2018, Angewandte Chemie.

[122]  N. K. Shrestha,et al.  Supercapacitive property of metal–organic-frameworks with different pore dimensions and morphology , 2013 .

[123]  M. A. Kulandainathan,et al.  Metal organic framework-laden composite polymer electrolytes for efficient and durable all-solid-state-lithium batteries , 2014 .

[124]  Jiangtian Li,et al.  Thermodynamics of the oxygen evolution electrocatalysis in a functionalized UiO-66 metal-organic frameworks , 2016 .

[125]  Ziyang Guo,et al.  Metal–Organic Frameworks as Cathode Materials for Li–O2 Batteries , 2014, Advanced materials.

[126]  Shudong Wang,et al.  Composites of metal–organic frameworks and carbon-based materials: preparations, functionalities and applications , 2016 .

[127]  Christian Serre,et al.  Nanostructured metal–organic frameworks and their bio-related applications , 2016 .

[128]  Hua Zhang,et al.  Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. , 2017, Chemical Society reviews.

[129]  Hongyu Sun,et al.  Polyoxometalate Cluster-Incorporated Metal-Organic Framework Hierarchical Nanotubes. , 2016, Small.

[130]  Cai Shen,et al.  An exceptionally stable functionalized metal-organic framework for lithium storage. , 2015, Chemical communications.

[131]  Z. Su,et al.  Ultrastable Polymolybdate-Based Metal-Organic Frameworks as Highly Active Electrocatalysts for Hydrogen Generation from Water. , 2015, Journal of the American Chemical Society.

[132]  Shyam Biswas,et al.  Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. , 2012, Chemical reviews.

[133]  B. Tang,et al.  Synthesis of nickel carbonate hydroxide/zeolitic imidazolate framework-8 as a supercapacitors electrode , 2014 .

[134]  B. Tang,et al.  Synthesis of nickel oxalate/zeolitic imidazolate framework-67 (NiC2O4/ZIF-67) as a supercapacitor electrode , 2015 .

[135]  B. Tang,et al.  The electrochemical performance of SnO2 quantum dots@zeolitic imidazolate frameworks-8 (ZIF-8) composite material for supercapacitors , 2014 .

[136]  Xu-jie Yang,et al.  Electrochemical investigation of a new Cu-MOF and its electrocatalytic activity towards H2O2 oxidation in alkaline solution , 2013 .

[137]  Sheng Chen,et al.  Ultrathin metal-organic framework array for efficient electrocatalytic water splitting , 2017, Nature Communications.

[138]  Yang Wang,et al.  A metal–organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection , 2017 .

[139]  M. V. Lozano,et al.  Heparin‐Engineered Mesoporous Iron Metal‐Organic Framework Nanoparticles: Toward Stealth Drug Nanocarriers , 2015, Advanced healthcare materials.

[140]  Ki‐Hyun Kim,et al.  Modern progress in metal-organic frameworks and their composites for diverse applications , 2017 .

[141]  Xiaogang Zhang,et al.  Exploring metal organic frameworks for energy storage in batteries and supercapacitors , 2017 .

[142]  A. Stein,et al.  Nanocomposites of zeolitic imidazolate frameworks on graphene oxide for pseudocapacitor applications , 2016, Journal of Applied Electrochemistry.

[143]  S. Marinescu,et al.  Electrocatalytic Metal-Organic Frameworks for Energy Applications. , 2017, ChemSusChem.

[144]  Shasha Zheng,et al.  Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors , 2016 .

[145]  Thomas A. Yersak,et al.  MIL-101(Fe) as a lithium-ion battery electrode material: a relaxation and intercalation mechanism during lithium insertion , 2015 .

[146]  S. Dong,et al.  Direct carbonization of cobalt-doped NH2-MIL-53(Fe) for electrocatalysis of oxygen evolution reaction. , 2016, Nanoscale.

[147]  P. Qi,et al.  Inorganic and organic hybrid solid electrolytes for lithium-ion batteries , 2016 .

[148]  P. Cheng,et al.  The electrochemical discrimination of pinene enantiomers by a cyclodextrin metal-organic framework. , 2017, Dalton transactions.

[149]  X. Lou,et al.  Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges , 2017, Science Advances.

[150]  C. Feng,et al.  Synthesis and electrochemical properties of Fe 3 O 4 @MOF core-shell microspheres as an anode for lithium ion battery application , 2017 .

[151]  Kuo-Chuan Ho,et al.  In situ growth of porphyrinic metal–organic framework nanocrystals on graphene nanoribbons for the electrocatalytic oxidation of nitrite , 2016 .

[152]  Shuangyin Wang,et al.  Creating coordinatively unsaturated metal sites in metal-organic-frameworks as efficient electrocatalysts for the oxygen evolution reaction: Insights into the active centers , 2017 .

[153]  Jianbo Jia,et al.  In situ formed Fe-N doped metal organic framework@carbon nanotubes/graphene hybrids for a rechargeable Zn-air battery. , 2017, Chemical communications.

[154]  Wei Xia,et al.  Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion , 2015 .

[155]  Yuehuan Li,et al.  An enhanced sensitivity towards H 2 O 2 reduction based on a novel Cu metal–organic framework and acetylene black modified electrode , 2017 .

[156]  Salete S. Balula,et al.  Novel composite material polyoxovanadate@MIL-101(Cr): a highly efficient electrocatalyst for ascorbic acid oxidation. , 2013, ACS applied materials & interfaces.

[157]  A. Ehsani,et al.  Facile electrosynthesis of nano flower like metal-organic framework and its nanocomposite with conjugated polymer as a novel and hybrid electrode material for highly capacitive pseudocapacitors. , 2016, Journal of colloid and interface science.

[158]  Junwei Zheng,et al.  Nanostructured Co(II)-based MOFs as promising anodes for advanced lithium storage , 2016 .

[159]  D. Bradshaw,et al.  Synthesis and applications of metal-organic framework–quantum dot (QD@MOF) composites , 2016 .

[160]  M. A. Kulandainathan,et al.  Composite Polymer Electrolytes Encompassing Metal Organic Frame Works: A New Strategy for All-Solid-State Lithium Batteries , 2014 .

[161]  A. Emwas,et al.  MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage , 2015, Journal of the American Chemical Society.

[162]  Lei Gou,et al.  Rational synthesis of Ni3(HCOO)6/CNT ellipsoids with enhanced lithium storage performance: inspired by the time evolution of the growth process of a nickel formate framework. , 2017, Dalton transactions.

[163]  H. Ju,et al.  Porphyrinic metal-organic framework as electrochemical probe for DNA sensing via triple-helix molecular switch. , 2015, Biosensors & bioelectronics.

[164]  G. Das,et al.  Nickel-metal organic framework/MWCNT composite electrode for non-enzymatic urea detection , 2017 .

[165]  Shenguang Ge,et al.  3D origami electrochemical device for sensitive Pb2+ testing based on DNA functionalized iron-porphyrinic metal-organic framework. , 2017, Biosensors & bioelectronics.

[166]  B. Tang,et al.  Flower-like Ni3(NO3)2(OH)4@Zr-metal organic framework (UiO-66) composites as electrode materials for high performance pseudocapacitors , 2016, Ionics.

[167]  I. Khan,et al.  Soft-template carbonization approach of MOF-5 to mesoporous carbon nanospheres as excellent electrode materials for supercapacitor , 2017 .

[168]  J. Botas,et al.  Co8-MOF-5 as electrode for supercapacitors , 2012 .

[169]  Hongying Quan,et al.  Fabrication of Hierarchical Porous Metal–Organic Framework Electrode for Aqueous Asymmetric Supercapacitor , 2017 .

[170]  S. Maiti,et al.  Reversible Lithium Storage in Manganese 1,3,5-Benzenetricarboxylate Metal-Organic Framework with High Capacity and Rate Performance. , 2015, ACS applied materials & interfaces.

[171]  Chao Li,et al.  Cobalt(II) dicarboxylate-based metal-organic framework for long-cycling and high-rate potassium-ion battery anode , 2017 .

[172]  Qiang Xu,et al.  Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. , 2017, Chemical Society reviews.

[173]  Kwang Soo Kim,et al.  Mesoporous Silicon Hollow Nanocubes Derived from Metal-Organic Framework Template for Advanced Lithium-Ion Battery Anode. , 2017, ACS nano.

[174]  Liqiang Xu,et al.  Cobalt- and Cadmium-Based Metal-Organic Frameworks as High-Performance Anodes for Sodium Ion Batteries and Lithium Ion Batteries. , 2017, ACS applied materials & interfaces.

[175]  Zhi-zhong Xie,et al.  Determination of catechol and hydroquinone with high sensitivity using MOF-graphene composites modified electrode , 2017 .

[176]  Colin F. Dickens,et al.  Combining theory and experiment in electrocatalysis: Insights into materials design , 2017, Science.

[177]  Jie Zhu,et al.  Electrochemical Water Oxidation by a Catalyst-Modified Metal-Organic Framework Thin Film. , 2017, ChemSusChem.

[178]  Chengxin Wang,et al.  Reversible lithiation–delithiation chemistry in cobalt based metal organic framework nanowire electrode engineering for advanced lithium-ion batteries , 2016 .

[179]  Bingbing Tian,et al.  Crystal Engineering of Naphthalenediimide-Based Metal-Organic Frameworks: Structure-Dependent Lithium Storage. , 2016, ACS applied materials & interfaces.

[180]  Heejoon Ahn,et al.  Unusual energy storage and charge retention in Co-based metal–organic-frameworks , 2012 .

[181]  Kai Qi,et al.  Construction of Metal-Organic Framework/Conductive Polymer Hybrid for All-Solid-State Fabric Supercapacitor. , 2018, ACS applied materials & interfaces.

[182]  Lu Wang,et al.  Flexible Solid-State Supercapacitor Based on a Metal-Organic Framework Interwoven by Electrochemically-Deposited PANI. , 2015, Journal of the American Chemical Society.

[183]  Lain‐Jong Li,et al.  Metal-Organic Framework-Based Separators for Enhancing Li-S Battery Stability: Mechanism of Mitigating Polysulfide Diffusion , 2017 .

[184]  Pingwu Du,et al.  A novel two-dimensional nickel phthalocyanine-based metal–organic framework for highly efficient water oxidation catalysis , 2018 .

[185]  Jiangtao Hu,et al.  A Metal–Organic‐Framework‐Based Electrolyte with Nanowetted Interfaces for High‐Energy‐Density Solid‐State Lithium Battery , 2018, Advanced materials.

[186]  Satish K. Nune,et al.  In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors. , 2014, ACS applied materials & interfaces.

[187]  C. Li,et al.  Highly reversible lithium storage in cobalt 2,5-dioxido-1,4-benzenedicarboxylate metal-organic frameworks boosted by pseudocapacitance. , 2017, Journal of colloid and interface science.

[188]  Bo Wang,et al.  Metal–organic frameworks for energy storage: Batteries and supercapacitors , 2016 .

[189]  K. Ho,et al.  Porphyrin-based metal–organic framework thin films for electrochemical nitrite detection , 2015 .

[190]  X. Lou,et al.  Complex Nanostructures from Materials based on Metal–Organic Frameworks for Electrochemical Energy Storage and Conversion , 2017, Advanced materials.

[191]  Xueqin Zhang,et al.  Carbon nanotubes@metal–organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage , 2015 .

[192]  M. Doublet,et al.  FeII/FeIII mixed-valence state induced by Li-insertion into the metal-organic-framework Mil53(Fe): A DFT+U study , 2011 .

[193]  Qiang Xu,et al.  Metal-Organic Frameworks for Energy Applications , 2017 .

[194]  P. Wen,et al.  Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density , 2015 .

[195]  A. Bhardwaj,et al.  In situ click chemistry generation of cyclooxygenase-2 inhibitors , 2017, Nature Communications.

[196]  A. Mahmood,et al.  Metal‐Organic Framework‐Based Nanomaterials for Electrocatalysis , 2016 .

[197]  Jun Jin,et al.  Self-assembly of cobalt-centered metal organic framework and multiwalled carbon nanotubes hybrids as a highly active and corrosion-resistant bifunctional oxygen catalyst , 2016 .

[198]  F. Huo,et al.  Metal-organic framework composites: from fundamentals to applications. , 2015, Nanoscale.

[199]  Ming Xu,et al.  Two-Dimensional Metal-Organic Framework Nanosheets as an Enzyme Inhibitor: Modulation of the α-Chymotrypsin Activity. , 2017, Journal of the American Chemical Society.

[200]  Shasha Zheng,et al.  Syntheses and Energy Storage Applications of MxSy (M = Cu, Ag, Au) and Their Composites: Rechargeable Batteries and Supercapacitors , 2017 .

[201]  Qiang Xu,et al.  Metal-organic framework composites. , 2014, Chemical Society reviews.

[202]  Fengli Qu,et al.  A Co-MOF nanosheet array as a high-performance electrocatalyst for the oxygen evolution reaction in alkaline electrolytes , 2018, Inorganic Chemistry Frontiers.

[203]  Xiaomin Liu,et al.  Bioinspired Cobalt-Citrate Metal-Organic Framework as an Efficient Electrocatalyst for Water Oxidation. , 2017, ACS applied materials & interfaces.

[204]  Ying-jie Zhou,et al.  In-Situ Fabrication of Graphene Oxide Hybrid Ni-Based Metal-Organic Framework (Ni-MOFs@GO) with Ultrahigh Capacitance as Electrochemical Pseudocapacitor Materials. , 2016, ACS applied materials & interfaces.

[205]  Lei Gou,et al.  One-pot synthesis of a metal–organic framework as an anode for Li-ion batteries with improved capacity and cycling stability , 2014 .

[206]  Shasha Zheng,et al.  Nanostructured graphene-based materials for flexible energy storage , 2017 .

[207]  F. Jaouen,et al.  Metal organic frameworks for electrochemical applications , 2012 .

[208]  Ying Wang,et al.  Recent Progress in Metal-Organic Frameworks and Their Derived Nanostructures for Energy and Environmental Applications. , 2017, ChemSusChem.

[209]  Qunjie Xu,et al.  (Metal-Organic Framework)-Polyaniline sandwich structure composites as novel hybrid electrode materials for high-performance supercapacitor , 2016 .

[210]  Daojun Zhang,et al.  Redox-active microsized metal-organic framework for efficient nonenzymatic H2O2 sensing , 2015 .

[211]  Jun Chen,et al.  Transition-Metal-Triggered High-Efficiency Lithium Ion Storage via Coordination Interactions with Redox-Active Croconate in One-Dimensional Metal-Organic Anode Materials. , 2018, ACS applied materials & interfaces.

[212]  Watchareeya Kaveevivitchai,et al.  Exploration of vanadium benzenedicarboxylate as a cathode for rechargeable lithium batteries , 2015 .

[213]  Hao Wang,et al.  Preparation, characterization and bifunctional catalytic properties of MOF(Fe/Co) catalyst for oxygen reduction/evolution reactions in alkaline electrolyte , 2014 .

[214]  Haoshen Zhou,et al.  Metal–organic framework-based separator for lithium–sulfur batteries , 2016, Nature Energy.

[215]  C. Kubiak,et al.  Fe-Porphyrin-Based Metal–Organic Framework Films as High-Surface Concentration, Heterogeneous Catalysts for Electrochemical Reduction of CO2 , 2015 .

[216]  Jaephil Cho,et al.  Graphene/Graphene‐Tube Nanocomposites Templated from Cage‐Containing Metal‐Organic Frameworks for Oxygen Reduction in Li–O2 Batteries , 2014, Advanced materials.

[217]  Xiongwei Wu,et al.  A Quasi‐Solid‐State Sodium‐Ion Capacitor with High Energy Density , 2015, Advanced materials.

[218]  Krista S. Walton,et al.  Nickel-based pillared MOFs for high-performance supercapacitors: Design, synthesis and stability study , 2016 .

[219]  Yang Wang,et al.  A Simple Approach to Boost Capacitance: Flexible Supercapacitors Based on Manganese Oxides@MOFs via Chemically Induced In Situ Self‐Transformation , 2016, Advanced materials.

[220]  E. Kowsari,et al.  P-type conductive polymer/zeolitic imidazolate framework-67 (ZIF-67) nanocomposite film: Synthesis, characterization, and electrochemical performance as efficient electrode materials in pseudocapacitors. , 2018, Journal of colloid and interface science.

[221]  Juan-Yu Yang,et al.  One-step synthesis of a copper-based metal–organic framework–graphene nanocomposite with enhanced electrocatalytic activity , 2015 .

[222]  Yujie Ban,et al.  Microstructural Engineering and Architectural Design of Metal–Organic Framework Membranes , 2017, Advanced materials.

[223]  Joseph S. Elias,et al.  Conductive MOF electrodes for stable supercapacitors with high areal capacitance. , 2017, Nature materials.

[224]  Derrek E. Lobo,et al.  Electrochemical capacitance of Ni-doped metal organic framework and reduced graphene oxide composites: more than the sum of its parts. , 2015, ACS applied materials & interfaces.

[225]  Deyu Wang,et al.  Facile synthesis of Fe-MOF/RGO and its application as a high performance anode in lithium-ion batteries , 2016 .

[226]  J. Marrot,et al.  Polyoxometalate-based metal organic frameworks (POMOFs): structural trends, energetics, and high electrocatalytic efficiency for hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.