A New GCD Algorithm for Quadratic Number Rings with Unique Factorization

We present an algorithm to compute a greatest common divisor of two integers in a quadratic number ring that is a unique factorization domain. The algorithm uses $O(n {\rm log}^{2} n {\rm log log} n + \Delta^ {\raisebox{0.8mm}{\scriptsize 1}{\scriptsize /}\raisebox{-0.5mm}{\scriptsize 2}} +^{\epsilon})$ bit operations in a ring of discriminant Δ. This appears to be the first gcd algorithm of complexity o(n2) for any fixed non-Euclidean number ring. The main idea behind the algorithm is a well known relationship between quadratic forms and ideals in quadratic rings. We also give a simpler version of the algorithm that has complexity O(n2) in a fixed ring. It uses a new binary algorithm for reducing quadratic forms that may be of independent interest.

[1]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[2]  Ivan Damgård,et al.  Efficient algorithms for the gcd and cubic residuosity in the ring of Eisenstein integers , 2003, J. Symb. Comput..

[3]  Arnold Schönhage,et al.  Fast reduction and composition of binary quadratic forms , 1991, ISSAC '91.

[4]  J. Stein Computational problems associated with Racah algebra , 1967 .

[5]  Erich Kaltofen,et al.  Computing greatest common divisors and factorizations in quadratic number fields , 1989 .

[6]  H. Lenstra On the calculation of regulators and class numbers of quadratic fields , 1982 .

[7]  Franz Lemmermeyer,et al.  THE EUCLIDEAN ALGORITHM IN ALGEBRAIC NUMBER FIELDS , 2004 .

[8]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[9]  Arnold Schönhage,et al.  Schnelle Multiplikation großer Zahlen , 1971, Computing.

[10]  André Weilert,et al.  (1+i)-ary GCD Computation in Z[i] as an Analogue to the Binary GCD Algorithm , 2000, J. Symb. Comput..

[11]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[12]  André Weilert,et al.  Asymptotically Fast GCD Computation in Z[i] , 2000, ANTS.

[13]  Gudmund Skovbjerg Frandsen,et al.  Binary GCD Like Algorithms for Some Complex Quadratic Rings , 2004, ANTS.

[14]  Alejandro Buchmann,et al.  An analysis of the reduction algorithms for binary quadratic forms , 1997 .

[15]  Victor Shoup,et al.  A computational introduction to number theory and algebra , 2005 .

[16]  Jeffrey C. Lagarias,et al.  Worst-Case Complexity Bounds for Algorithms in the Theory of Integral Quadratic Forms , 1980, J. Algorithms.

[17]  Harvey Cohn,et al.  Advanced Number Theory , 1980 .

[18]  Ivan Damgård,et al.  Efficient algorithms for the gcd and cubic residuosity in the ring of Eisenstein integers , 2005, J. Symb. Comput..

[19]  Douglas Wikström,et al.  On the l-Ary GCD-Algorithm in Rings of Integers , 2005, ICALP.

[20]  Harvey Cohn,et al.  A second course in number theory , 1962 .

[21]  H. C. Williams,et al.  Short Representation of Quadratic Integers , 1995 .

[22]  D. H. Lehmer Euclid's Algorithm for Large Numbers , 1938 .

[23]  Arnold Schönhage,et al.  Schnelle Berechnung von Kettenbruchentwicklungen , 1971, Acta Informatica.

[24]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.