Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer
暂无分享,去创建一个
William Wheeler | Paolo Vineis | Andres Metspalu | Antonio Agudo | Nilanjan Chatterjee | Jian Gu | Kari Stefansson | Maxime Vallée | David C Christiani | Mattias Johansson | Yongyue Wei | Maria Teresa Landi | Gudmar Thorleifsson | Stephen J Chanock | Jolanta Lissowska | Yuanqing Ye | Marc Henrion | Christopher I Amos | Elio Riboli | Neil E Caporaso | Angela Risch | Francoise Clavel-Chapelon | Kay-Tee Khaw | Li Su | Gary Goodman | Richard S Houlston | Daniel Chubb | Vladimir Janout | Ghislaine Scelo | Florence Le Calvez-Kelm | James D McKay | Paul Brennan | Thorunn Rafnar | Xifeng Wu | Athena Matakidou | Hans E Krokan | K. Stefánsson | F. Clavel-Chapelon | E. Riboli | S. Chanock | P. Vineis | M. Spitz | N. Chatterjee | H. Dienemann | P. Sulem | G. Thorleifsson | A. Tjønneland | J. Gu | Xifeng Wu | L. Vatten | A. Metspalu | C. Amos | Zhaoming Wang | P. Broderick | T. Eisen | A. Matakidou | W. Chen | R. Houlston | D. Albanes | E. Weiderpass | M. Lathrop | W. Wheeler | D. Christiani | T. Rafnar | P. Brennan | V. Gaborieau | J. Lissowska | H. Bueno-De-Mesquita | T. Vooder | D. Trichopoulos | Y. Ye | P. Rudnai | J. Lubiński | A. Risch | L. Forétova | I. Njølstad | S. Gapstur | K. Khaw | E. Fabianova | L. Su | M. Johansson | R. Kaaks | V. Stevens | M. Nelis | M. E. Gabrielsen | F. Skorpen | Geoffrey Liu | D. Zaridze | V. Janout | V. Bencko | Neonilia szeszenia-Dabrowska | D. Mates | R. Hung | G. Goodman | Yongyue Wei | M. Landi | N. Caporaso | M. Timofeeva | G. Scelo | S. Benhamou | M. Henrion | J. McKay | A. Agudo | Younghun Han | Yufei Wang | H. Krokan | Kristjan Välk | Chu Chen | M. Johansson | M. Lener | A. Lloyd | A. Rosenberger | H. Bueno‐de‐Mesquita | B. Kinnersley | D. Chubb | Zhaoming Wang | Margaret R Spitz | Hendrik Dienemann | Patrick Sulem | Mark Lathrop | H Bas Bueno-de-Mesquita | Demetrius Albanes | Rudolf Kaaks | Anne Tjønneland | Dimitrios Trichopoulos | Elisabete Weiderpass | Younghun Han | Timothy Eisen | Inger Njølstad | Simone Benhamou | Susan M Gapstur | Eleonora Fabianova | Xuchen Zong | M. Laplana | M. Delahaye-Sourdeix | M. Vallée | F. Le Calvez-Kelm | Jian Gu | Chu Chen | Lenka Foretova | Jan Lubiński | Mari Nelis | Victoria L Stevens | Rayjean J Hung | David Zaridze | Peter Rudnai | Dana Mates | Vladimir Bencko | Peter Broderick | Geoffrey Liu | Ben Kinnersley | Mikael Johansson | Kristjan Välk | Albert Rosenberger | Lars Vatten | Valerie Gaborieau | Yufei Wang | Frank Skorpen | Xuchen Zong | Marcin Lener | Manon Delahaye-Sourdeix | Neonilia Szeszenia-Dabrowska | Amy Lloyd | Maria N Timofeeva | Marina Laplana | Wei V Chen | Maiken Elvestad Gabrielsen | Tonu Vooder | Mikael Johansson | H. Bueno-de-Mesquita | Florence LeCalvez-Kelm | M. Gabrielsen | N. szeszenia-Dabrowska | L. Foretova | J. Mckay | Kristjan Valk | E. Fabiánová | L. Su | P. Brennan | E. Riboli | Y. Ye | Manon Delahaye-Sourdeix | Marina Laplana
[1] 田原 康玄,et al. 生活習慣病とgenome-wide association study , 2015 .
[2] Lihong Liu,et al. The effect of CHEK2 variant I157T on cancer susceptibility: evidence from a meta-analysis. , 2013, DNA and cell biology.
[3] Daniel F. Gudbjartsson,et al. Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits , 2013, Nature.
[4] Jaana M. Hartikainen,et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk , 2013, Nature Genetics.
[5] B. Qian,et al. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia , 2012, Nature Genetics.
[6] David C. Nickle,et al. Lung eQTLs to Help Reveal the Molecular Underpinnings of Asthma , 2012, PLoS genetics.
[7] Steven J. M. Jones,et al. Comprehensive genomic characterization of squamous cell lung cancers , 2012, Nature.
[8] Angela N. Brooks,et al. Mapping the Hallmarks of Lung Adenocarcinoma with Massively Parallel Sequencing , 2012, Cell.
[9] Yang Zhao,et al. Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls , 2012, Human molecular genetics.
[10] J. Marchini,et al. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing , 2012, Nature Genetics.
[11] Jianxin Shi,et al. Inherited variation at chromosome 12p13.33, including RAD52, influences the risk of squamous cell lung carcinoma. , 2012, Cancer discovery.
[12] G. McVean,et al. Differential confounding of rare and common variants in spatially structured populations , 2011, Nature Genetics.
[13] Charles A Powell,et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society: international multidisciplinary classification of lung adenocarcinoma: executive summary. , 2011, Proceedings of the American Thoracic Society.
[14] Xihong Lin,et al. Cigarette smoking increases copy number alterations in nonsmall-cell lung cancer , 2011, Proceedings of the National Academy of Sciences.
[15] Per Magne Ueland,et al. Genetic Polymorphisms in 15q25 and 19q13 Loci, Cotinine Levels, and Risk of Lung Cancer in EPIC , 2011, Cancer Epidemiology, Biomarkers & Prevention.
[16] Wen Tan,et al. A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese , 2011, Nature Genetics.
[17] Xu Xi,et al. To Be American , 2011, Fourth Genre: Explorations in Nonfiction.
[18] Andres Metspalu,et al. Gene Expression Profiles of Non-Small Cell Lung Cancer: Survival Prediction and New Biomarkers , 2011, Oncology.
[19] C. Mathers,et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008 , 2010, International journal of cancer.
[20] G. Abecasis,et al. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes , 2010, Genetic epidemiology.
[21] Yusuke Nakamura,et al. Variation in TP63 is associated with lung adenocarcinoma susceptibility in Japanese and Korean populations , 2010, Nature Genetics.
[22] J. Marchini,et al. Genotype imputation for genome-wide association studies , 2010, Nature Reviews Genetics.
[23] C. Gieger,et al. Sequence variants at CHRNB3–CHRNA6 and CYP2A6 affect smoking behavior , 2010, Nature Genetics.
[24] Yurii S. Aulchenko,et al. ProbABEL package for genome-wide association analysis of imputed data , 2010, BMC Bioinformatics.
[25] Daniel F. Gudbjartsson,et al. Parental origin of sequence variants associated with complex diseases , 2009, Nature.
[26] Ying Wang,et al. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. , 2009, American journal of human genetics.
[27] M. Spitz,et al. Deciphering the impact of common genetic variation on lung cancer risk: a genome-wide association study. , 2009, Cancer research.
[28] P. Donnelly,et al. A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.
[29] R. Mägi,et al. Genetic Structure of Europeans: A View from the North–East , 2009, PloS one.
[30] Paolo Vineis,et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types , 2009, Nature Genetics.
[31] Andrew D. Johnson,et al. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap , 2008, Bioinform..
[32] Christopher I Amos,et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk , 2008, Nature Genetics.
[33] Simon Heath,et al. Lung cancer susceptibility locus at 5p15.33 , 2008, Nature Genetics.
[34] P. Hasty,et al. The checkpoint kinases Chk1 and Chk2 regulate the functional associations between hBRCA2 and Rad51 in response to DNA damage , 2008, Oncogene.
[35] S. Wacholder,et al. Environment And Genetics in Lung cancer Etiology (EAGLE) study: An integrative population-based case-control study of lung cancer , 2008, BMC public health.
[36] G. Mills,et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1 , 2008, Nature Genetics.
[37] Daniel F. Gudbjartsson,et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease , 2008, Nature.
[38] Paolo Vineis,et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25 , 2008, Nature.
[39] A. Jakubowska,et al. Constitutional CHEK2 mutations are associated with a decreased risk of lung and laryngeal cancers. , 2008, Carcinogenesis.
[40] M. McCarthy,et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes , 2008, Nature Genetics.
[41] P. Hainaut,et al. Properties of the six isoforms of p63: p53-like regulation in response to genotoxic stress and cross talk with DeltaNp73. , 2008, Carcinogenesis.
[42] T. Eisen,et al. Bmc Cancer Identification of Low Penetrance Alleles for Lung Cancer: the Genetic Lung Cancer Predisposition Study (gelcaps) , 2008 .
[43] M. Thornquist. The Carotene and Retinol Efficacy Trial (Caret) , 2007 .
[44] E. Papaemmanuil,et al. National study of colorectal cancer genetics , 2007, British Journal of Cancer.
[45] Manuel A. R. Ferreira,et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.
[46] R. Malekzadeh,et al. Germline BRCA2 mutations and the risk of esophageal squamous cell carcinoma , 2007, Oncogene.
[47] R. Peto,et al. Uncommon CHEK2 mis-sense variant and reduced risk of tobacco-related cancers: case control study. , 2007, Human molecular genetics.
[48] Simon C. Potter,et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.
[49] E. Flores. The Roles of p63 in Cancer , 2007, Cell cycle.
[50] Xihong Lin,et al. Genotypes and haplotypes of matrix metalloproteinase 1, 3 and 12 genes and the risk of lung cancer. , 2006, Carcinogenesis.
[51] Robert N Hoover,et al. Methods for etiologic and early marker investigations in the PLCO trial. , 2005, Mutation research.
[52] D. Clayton,et al. Population structure, differential bias and genomic control in a large-scale, case-control association study , 2005, Nature Genetics.
[53] J. C. Houwelingen,et al. Cancer risks in BRCA2 families: estimates for sites other than breast and ovary , 2005, Journal of Medical Genetics.
[54] F. Couch,et al. Increased prevalence of the BRCA2 polymorphic stop codon K3326X among individuals with familial pancreatic cancer , 2005, Oncogene.
[55] F. Couch,et al. Functional evaluation and cancer risk assessment of BRCA2 unclassified variants. , 2005, Cancer research.
[56] U. Moll,et al. p63 and p73: roles in development and tumor formation. , 2004, Molecular cancer research : MCR.
[57] P. Brennan,et al. Occupational Exposure to Vinyl Chloride, Acrylonitrile and Styrene and Lung Cancer Risk (Europe) , 2004, Cancer Causes & Control.
[58] M. Burns,et al. Case-Control Study , 2020, Definitions.
[59] H. Dienemann,et al. The CYP3A4*1B allele increases risk for small cell lung cancer: effect of gender and smoking dose. , 2003, Pharmacogenetics.
[60] D. Altman,et al. Measuring inconsistency in meta-analyses , 2003, BMJ : British Medical Journal.
[61] M. Thun,et al. The American Cancer Society Cancer Prevention Study II Nutrition Cohort , 2002, Cancer.
[62] Arnulf Langhammer,et al. The Nord-Trøndelag Health Study 1995-97 (HUNT 2): Objectives, contents, methods and participation , 2003 .
[63] P. Dayer,et al. Point: myeloperoxidase -463G --> a polymorphism and lung cancer risk. , 2002, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.
[64] S. Gabriel,et al. The Structure of Haplotype Blocks in the Human Genome , 2002, Science.
[65] J. Haseman,et al. Cancer susceptibility of mice with a homozygous deletion in the COOH-terminal domain of the Brca2 gene. , 2002, Cancer research.
[66] M. Thun,et al. The American Cancer Society Cancer Prevention Study II Nutrition Cohort , 2002, Cancer.
[67] M. Thun,et al. The American Cancer Society Cancer Prevention Study II Nutrition Cohort: rationale, study design, and baseline characteristics. , 2002, Cancer.
[68] T. Eisen,et al. Genetic lung cancer predisposition study (GELCAPS) , 2000 .
[69] Y. Ikawa,et al. p51A (TAp63γ), a p53 homolog, accumulates in response to DNA damage for cell regulation , 2000, Oncogene.
[70] Y. Miki,et al. Nuclear localization signals of the BRCA2 protein. , 2000, Biochemical and biophysical research communications.
[71] F. Gage,et al. Truncated BRCA2 is cytoplasmic: implications for cancer-linked mutations. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[72] H. Boeing,et al. EPIC-Germany – A Source for Studies into Diet and Risk of Chronic Diseases , 1999, Annals of Nutrition and Metabolism.
[73] Cancer Risks in BRCA 2 Mutation Carriers The Breast Cancer Linkage Consortium , 1999 .
[74] H. Olsson. Cancer risks in BRCA2 mutation carriers. , 1999, Journal of the National Cancer Institute.
[75] M. Stratton,et al. A polymorphic stop codon in BRCA2 , 1996, Nature Genetics.
[76] G. Omenn,et al. The beta-carotene and retinol efficacy trial (CARET) for chemoprevention of lung cancer in high risk populations: smokers and asbestos-exposed workers. , 1994, Cancer research.
[77] The alpha-tocopherol, beta-carotene lung cancer prevention study: design, methods, participant characteristics, and compliance. The ATBC Cancer Prevention Study Group. , 1994, Annals of epidemiology.
[78] J. Fraumeni,et al. Design, Methods, Participant Characteristics, and Compliance , 1993 .