Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer

William Wheeler | Paolo Vineis | Andres Metspalu | Antonio Agudo | Nilanjan Chatterjee | Jian Gu | Kari Stefansson | Maxime Vallée | David C Christiani | Mattias Johansson | Yongyue Wei | Maria Teresa Landi | Gudmar Thorleifsson | Stephen J Chanock | Jolanta Lissowska | Yuanqing Ye | Marc Henrion | Christopher I Amos | Elio Riboli | Neil E Caporaso | Angela Risch | Francoise Clavel-Chapelon | Kay-Tee Khaw | Li Su | Gary Goodman | Richard S Houlston | Daniel Chubb | Vladimir Janout | Ghislaine Scelo | Florence Le Calvez-Kelm | James D McKay | Paul Brennan | Thorunn Rafnar | Xifeng Wu | Athena Matakidou | Hans E Krokan | K. Stefánsson | F. Clavel-Chapelon | E. Riboli | S. Chanock | P. Vineis | M. Spitz | N. Chatterjee | H. Dienemann | P. Sulem | G. Thorleifsson | A. Tjønneland | J. Gu | Xifeng Wu | L. Vatten | A. Metspalu | C. Amos | Zhaoming Wang | P. Broderick | T. Eisen | A. Matakidou | W. Chen | R. Houlston | D. Albanes | E. Weiderpass | M. Lathrop | W. Wheeler | D. Christiani | T. Rafnar | P. Brennan | V. Gaborieau | J. Lissowska | H. Bueno-De-Mesquita | T. Vooder | D. Trichopoulos | Y. Ye | P. Rudnai | J. Lubiński | A. Risch | L. Forétova | I. Njølstad | S. Gapstur | K. Khaw | E. Fabianova | L. Su | M. Johansson | R. Kaaks | V. Stevens | M. Nelis | M. E. Gabrielsen | F. Skorpen | Geoffrey Liu | D. Zaridze | V. Janout | V. Bencko | Neonilia szeszenia-Dabrowska | D. Mates | R. Hung | G. Goodman | Yongyue Wei | M. Landi | N. Caporaso | M. Timofeeva | G. Scelo | S. Benhamou | M. Henrion | J. McKay | A. Agudo | Younghun Han | Yufei Wang | H. Krokan | Kristjan Välk | Chu Chen | M. Johansson | M. Lener | A. Lloyd | A. Rosenberger | H. Bueno‐de‐Mesquita | B. Kinnersley | D. Chubb | Zhaoming Wang | Margaret R Spitz | Hendrik Dienemann | Patrick Sulem | Mark Lathrop | H Bas Bueno-de-Mesquita | Demetrius Albanes | Rudolf Kaaks | Anne Tjønneland | Dimitrios Trichopoulos | Elisabete Weiderpass | Younghun Han | Timothy Eisen | Inger Njølstad | Simone Benhamou | Susan M Gapstur | Eleonora Fabianova | Xuchen Zong | M. Laplana | M. Delahaye-Sourdeix | M. Vallée | F. Le Calvez-Kelm | Jian Gu | Chu Chen | Lenka Foretova | Jan Lubiński | Mari Nelis | Victoria L Stevens | Rayjean J Hung | David Zaridze | Peter Rudnai | Dana Mates | Vladimir Bencko | Peter Broderick | Geoffrey Liu | Ben Kinnersley | Mikael Johansson | Kristjan Välk | Albert Rosenberger | Lars Vatten | Valerie Gaborieau | Yufei Wang | Frank Skorpen | Xuchen Zong | Marcin Lener | Manon Delahaye-Sourdeix | Neonilia Szeszenia-Dabrowska | Amy Lloyd | Maria N Timofeeva | Marina Laplana | Wei V Chen | Maiken Elvestad Gabrielsen | Tonu Vooder | Mikael Johansson | H. Bueno-de-Mesquita | Florence LeCalvez-Kelm | M. Gabrielsen | N. szeszenia-Dabrowska | L. Foretova | J. Mckay | Kristjan Valk | E. Fabiánová | L. Su | P. Brennan | E. Riboli | Y. Ye | Manon Delahaye-Sourdeix | Marina Laplana

[1]  田原 康玄,et al.  生活習慣病とgenome-wide association study , 2015 .

[2]  Lihong Liu,et al.  The effect of CHEK2 variant I157T on cancer susceptibility: evidence from a meta-analysis. , 2013, DNA and cell biology.

[3]  Daniel F. Gudbjartsson,et al.  Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits , 2013, Nature.

[4]  Jaana M. Hartikainen,et al.  Large-scale genotyping identifies 41 new loci associated with breast cancer risk , 2013, Nature Genetics.

[5]  B. Qian,et al.  Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia , 2012, Nature Genetics.

[6]  David C. Nickle,et al.  Lung eQTLs to Help Reveal the Molecular Underpinnings of Asthma , 2012, PLoS genetics.

[7]  Steven J. M. Jones,et al.  Comprehensive genomic characterization of squamous cell lung cancers , 2012, Nature.

[8]  Angela N. Brooks,et al.  Mapping the Hallmarks of Lung Adenocarcinoma with Massively Parallel Sequencing , 2012, Cell.

[9]  Yang Zhao,et al.  Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls , 2012, Human molecular genetics.

[10]  J. Marchini,et al.  Fast and accurate genotype imputation in genome-wide association studies through pre-phasing , 2012, Nature Genetics.

[11]  Jianxin Shi,et al.  Inherited variation at chromosome 12p13.33, including RAD52, influences the risk of squamous cell lung carcinoma. , 2012, Cancer discovery.

[12]  G. McVean,et al.  Differential confounding of rare and common variants in spatially structured populations , 2011, Nature Genetics.

[13]  Charles A Powell,et al.  International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society: international multidisciplinary classification of lung adenocarcinoma: executive summary. , 2011, Proceedings of the American Thoracic Society.

[14]  Xihong Lin,et al.  Cigarette smoking increases copy number alterations in nonsmall-cell lung cancer , 2011, Proceedings of the National Academy of Sciences.

[15]  Per Magne Ueland,et al.  Genetic Polymorphisms in 15q25 and 19q13 Loci, Cotinine Levels, and Risk of Lung Cancer in EPIC , 2011, Cancer Epidemiology, Biomarkers & Prevention.

[16]  Wen Tan,et al.  A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese , 2011, Nature Genetics.

[17]  Xu Xi,et al.  To Be American , 2011, Fourth Genre: Explorations in Nonfiction.

[18]  Andres Metspalu,et al.  Gene Expression Profiles of Non-Small Cell Lung Cancer: Survival Prediction and New Biomarkers , 2011, Oncology.

[19]  C. Mathers,et al.  Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008 , 2010, International journal of cancer.

[20]  G. Abecasis,et al.  MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes , 2010, Genetic epidemiology.

[21]  Yusuke Nakamura,et al.  Variation in TP63 is associated with lung adenocarcinoma susceptibility in Japanese and Korean populations , 2010, Nature Genetics.

[22]  J. Marchini,et al.  Genotype imputation for genome-wide association studies , 2010, Nature Reviews Genetics.

[23]  C. Gieger,et al.  Sequence variants at CHRNB3–CHRNA6 and CYP2A6 affect smoking behavior , 2010, Nature Genetics.

[24]  Yurii S. Aulchenko,et al.  ProbABEL package for genome-wide association analysis of imputed data , 2010, BMC Bioinformatics.

[25]  Daniel F. Gudbjartsson,et al.  Parental origin of sequence variants associated with complex diseases , 2009, Nature.

[26]  Ying Wang,et al.  A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. , 2009, American journal of human genetics.

[27]  M. Spitz,et al.  Deciphering the impact of common genetic variation on lung cancer risk: a genome-wide association study. , 2009, Cancer research.

[28]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[29]  R. Mägi,et al.  Genetic Structure of Europeans: A View from the North–East , 2009, PloS one.

[30]  Paolo Vineis,et al.  Sequence variants at the TERT-CLPTM1L locus associate with many cancer types , 2009, Nature Genetics.

[31]  Andrew D. Johnson,et al.  SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap , 2008, Bioinform..

[32]  Christopher I Amos,et al.  Common 5p15.33 and 6p21.33 variants influence lung cancer risk , 2008, Nature Genetics.

[33]  Simon Heath,et al.  Lung cancer susceptibility locus at 5p15.33 , 2008, Nature Genetics.

[34]  P. Hasty,et al.  The checkpoint kinases Chk1 and Chk2 regulate the functional associations between hBRCA2 and Rad51 in response to DNA damage , 2008, Oncogene.

[35]  S. Wacholder,et al.  Environment And Genetics in Lung cancer Etiology (EAGLE) study: An integrative population-based case-control study of lung cancer , 2008, BMC public health.

[36]  G. Mills,et al.  Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1 , 2008, Nature Genetics.

[37]  Daniel F. Gudbjartsson,et al.  A variant associated with nicotine dependence, lung cancer and peripheral arterial disease , 2008, Nature.

[38]  Paolo Vineis,et al.  A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25 , 2008, Nature.

[39]  A. Jakubowska,et al.  Constitutional CHEK2 mutations are associated with a decreased risk of lung and laryngeal cancers. , 2008, Carcinogenesis.

[40]  M. McCarthy,et al.  Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes , 2008, Nature Genetics.

[41]  P. Hainaut,et al.  Properties of the six isoforms of p63: p53-like regulation in response to genotoxic stress and cross talk with DeltaNp73. , 2008, Carcinogenesis.

[42]  T. Eisen,et al.  Bmc Cancer Identification of Low Penetrance Alleles for Lung Cancer: the Genetic Lung Cancer Predisposition Study (gelcaps) , 2008 .

[43]  M. Thornquist The Carotene and Retinol Efficacy Trial (Caret) , 2007 .

[44]  E. Papaemmanuil,et al.  National study of colorectal cancer genetics , 2007, British Journal of Cancer.

[45]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[46]  R. Malekzadeh,et al.  Germline BRCA2 mutations and the risk of esophageal squamous cell carcinoma , 2007, Oncogene.

[47]  R. Peto,et al.  Uncommon CHEK2 mis-sense variant and reduced risk of tobacco-related cancers: case control study. , 2007, Human molecular genetics.

[48]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[49]  E. Flores The Roles of p63 in Cancer , 2007, Cell cycle.

[50]  Xihong Lin,et al.  Genotypes and haplotypes of matrix metalloproteinase 1, 3 and 12 genes and the risk of lung cancer. , 2006, Carcinogenesis.

[51]  Robert N Hoover,et al.  Methods for etiologic and early marker investigations in the PLCO trial. , 2005, Mutation research.

[52]  D. Clayton,et al.  Population structure, differential bias and genomic control in a large-scale, case-control association study , 2005, Nature Genetics.

[53]  J. C. Houwelingen,et al.  Cancer risks in BRCA2 families: estimates for sites other than breast and ovary , 2005, Journal of Medical Genetics.

[54]  F. Couch,et al.  Increased prevalence of the BRCA2 polymorphic stop codon K3326X among individuals with familial pancreatic cancer , 2005, Oncogene.

[55]  F. Couch,et al.  Functional evaluation and cancer risk assessment of BRCA2 unclassified variants. , 2005, Cancer research.

[56]  U. Moll,et al.  p63 and p73: roles in development and tumor formation. , 2004, Molecular cancer research : MCR.

[57]  P. Brennan,et al.  Occupational Exposure to Vinyl Chloride, Acrylonitrile and Styrene and Lung Cancer Risk (Europe) , 2004, Cancer Causes & Control.

[58]  M. Burns,et al.  Case-Control Study , 2020, Definitions.

[59]  H. Dienemann,et al.  The CYP3A4*1B allele increases risk for small cell lung cancer: effect of gender and smoking dose. , 2003, Pharmacogenetics.

[60]  D. Altman,et al.  Measuring inconsistency in meta-analyses , 2003, BMJ : British Medical Journal.

[61]  M. Thun,et al.  The American Cancer Society Cancer Prevention Study II Nutrition Cohort , 2002, Cancer.

[62]  Arnulf Langhammer,et al.  The Nord-Trøndelag Health Study 1995-97 (HUNT 2): Objectives, contents, methods and participation , 2003 .

[63]  P. Dayer,et al.  Point: myeloperoxidase -463G --> a polymorphism and lung cancer risk. , 2002, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.

[64]  S. Gabriel,et al.  The Structure of Haplotype Blocks in the Human Genome , 2002, Science.

[65]  J. Haseman,et al.  Cancer susceptibility of mice with a homozygous deletion in the COOH-terminal domain of the Brca2 gene. , 2002, Cancer research.

[66]  M. Thun,et al.  The American Cancer Society Cancer Prevention Study II Nutrition Cohort , 2002, Cancer.

[67]  M. Thun,et al.  The American Cancer Society Cancer Prevention Study II Nutrition Cohort: rationale, study design, and baseline characteristics. , 2002, Cancer.

[68]  T. Eisen,et al.  Genetic lung cancer predisposition study (GELCAPS) , 2000 .

[69]  Y. Ikawa,et al.  p51A (TAp63γ), a p53 homolog, accumulates in response to DNA damage for cell regulation , 2000, Oncogene.

[70]  Y. Miki,et al.  Nuclear localization signals of the BRCA2 protein. , 2000, Biochemical and biophysical research communications.

[71]  F. Gage,et al.  Truncated BRCA2 is cytoplasmic: implications for cancer-linked mutations. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[72]  H. Boeing,et al.  EPIC-Germany – A Source for Studies into Diet and Risk of Chronic Diseases , 1999, Annals of Nutrition and Metabolism.

[73]  Cancer Risks in BRCA 2 Mutation Carriers The Breast Cancer Linkage Consortium , 1999 .

[74]  H. Olsson Cancer risks in BRCA2 mutation carriers. , 1999, Journal of the National Cancer Institute.

[75]  M. Stratton,et al.  A polymorphic stop codon in BRCA2 , 1996, Nature Genetics.

[76]  G. Omenn,et al.  The beta-carotene and retinol efficacy trial (CARET) for chemoprevention of lung cancer in high risk populations: smokers and asbestos-exposed workers. , 1994, Cancer research.

[77]  The alpha-tocopherol, beta-carotene lung cancer prevention study: design, methods, participant characteristics, and compliance. The ATBC Cancer Prevention Study Group. , 1994, Annals of epidemiology.

[78]  J. Fraumeni,et al.  Design, Methods, Participant Characteristics, and Compliance , 1993 .