Fractional Hardy-type and trace theorems for nonlocal function spaces with heterogeneous localization

This work aims to prove a Hardy-type inequality and a trace theorem for a class of function spaces on smooth domains with a nonlocal character. Functions in these spaces are allowed to be as rough as an [Formula: see text]-function inside the domain of definition but as smooth as a [Formula: see text]-function near the boundary. This feature is captured by a norm that is characterized by a nonlocal interaction kernel defined heterogeneously with a special localization feature on the boundary. Thus, the trace theorem we obtain here can be viewed as an improvement and refinement of the classical trace theorem for fractional Sobolev spaces [Formula: see text]. Similarly, the Hardy-type inequalities we establish for functions that vanish on the boundary show that functions in this generalized space have the same decay rate to the boundary as functions in the smaller space [Formula: see text]. The results we prove extend existing results shown in the Hilbert space setting with [Formula: see text]. A Poincaré-type inequality we establish for the function space under consideration together with the new trace theorem allows formulating and proving well-posedness of a nonlinear nonlocal variational problem with conventional local boundary condition.

[1]  Qiang Du,et al.  Nonlocal Models with Heterogeneous Localization and Their Application to Seamless Local-Nonlocal Coupling , 2019, Multiscale Model. Simul..

[2]  Qiang Du,et al.  Nonlocal Modeling, Analysis, and Computation , 2019 .

[3]  J. Klafter,et al.  Anomalous diffusion spreads its wings , 2005 .

[4]  Mikil Foss,et al.  Traces on General Sets in Rn for Functions with no Differentiability Requirements , 2021, SIAM J. Math. Anal..

[5]  Stanley Osher,et al.  Image Recovery via Nonlocal Operators , 2010, J. Sci. Comput..

[6]  Bartlomiej Dyda,et al.  Function spaces and extension results for nonlocal Dirichlet problems , 2016, Journal of Functional Analysis.

[7]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[8]  Emilio Gagliardo,et al.  Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in $n$ variabili , 1957 .

[9]  Michael Struwe,et al.  Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .

[10]  Eiichi Nakai,et al.  Singular and fractional integral operators on Campanato spaces with variable growth conditions , 2010 .

[11]  G. Leoni A First Course in Sobolev Spaces , 2009 .

[12]  Silvia Sastre Gómez,et al.  Nonlocal diffusion problems , 2014 .

[13]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[14]  Qiang Du,et al.  Nonlocal Constrained Value Problems for a Linear Peridynamic Navier Equation , 2014 .

[15]  Yoshihiro Sawano,et al.  Generalized Morrey spaces and trace operator , 2016, 1605.08500.

[16]  Fahad Almutairi,et al.  Nonlocal vector calculus , 2018 .

[17]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[18]  G. Leoni,et al.  Traces for homogeneous Sobolev spaces in infinite strip-like domains , 2018, Journal of Functional Analysis.

[19]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[20]  Qiang Du,et al.  Mathematical Models and Methods in Applied Sciences c ○ World Scientific Publishing Company Sandia National Labs SAND 2010-8353J A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS , 2022 .

[21]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[22]  Zhonghai Ding,et al.  A proof of the trace theorem of Sobolev spaces on Lipschitz domains , 1996 .

[23]  Qiang Du,et al.  Trace Theorems for some Nonlocal Function Spaces with Heterogeneous Localization , 2017, SIAM J. Math. Anal..

[24]  A. Zaanen,et al.  Compactness of integral operators in Banach function spaces , 1963 .

[25]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[26]  Antti V. Vahakangas,et al.  A framework for fractional Hardy inequalities , 2013, 1305.5181.

[27]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[28]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[29]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[30]  F. Demengel,et al.  Functional Spaces for the Theory of Elliptic Partial Differential Equations , 2012 .

[31]  E. Davies A review of Hardy inequalities , 1998, math/9809159.

[32]  Qiang Du,et al.  A Class of High Order Nonlocal Operators , 2016 .

[33]  Moritz Kassmann,et al.  The Dirichlet problem for nonlocal operators , 2013, 1309.5028.

[34]  Qiang Du,et al.  Nonconforming Discontinuous Galerkin Methods for Nonlocal Variational Problems , 2015, SIAM J. Numer. Anal..

[35]  J. Bourgain,et al.  Another look at Sobolev spaces , 2001 .

[36]  Oliver Dimon Kellogg On the derivatives of harmonic functions on the boundary , 1931 .

[37]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[38]  David John Littlewood,et al.  Variable Horizon in a Peridynamic Medium , 2015 .

[39]  Xavier Ros-Oton,et al.  Nonlocal elliptic equations in bounded domains: a survey , 2015, 1504.04099.

[40]  Qiang Du,et al.  On the variational limit of a class of nonlocal functionals related to peridynamics , 2015 .

[41]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[42]  Augusto C. Ponce,et al.  An estimate in the spirit of Poincaré's inequality , 2004 .

[43]  M. Foss Nonlocal Poincaré Inequalities for Integral Operators with Integrable Nonhomogeneous Kernels , 2019, 1911.10292.

[44]  Qiang Du,et al.  Asymptotically Compatible Schemes and Applications to Robust Discretization of Nonlocal Models , 2014, SIAM J. Numer. Anal..