Design of nanophotonic circuits for autonomous subsystem quantum error correction

We reapply our approach to designing nanophotonic quantum memories in order to formulate an optical network that autonomously protects a single logical qubit against arbitrary single-qubit errors. Emulating the nine-qubit Bacon–Shor subsystem code, the network replaces the traditionally discrete syndrome measurement and correction steps by continuous, time-independent optical interactions and coherent feedback of unitarily processed optical fields.

[1]  Hideo Mabuchi,et al.  Physical model of continuous two-qubit parity measurement in a cavity-QED network , 2008, 0812.1246.

[2]  Hideo Mabuchi,et al.  Cavity-QED models of switches for attojoule-scale nanophotonic logic , 2009, 0907.2720.

[3]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[4]  Andrew J. Landahl,et al.  Continuous quantum error correction via quantum feedback control , 2002 .

[5]  David Poulin,et al.  Unified and generalized approach to quantum error correction. , 2004, Physical review letters.

[6]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[7]  Ramon van Handel,et al.  Approximation and limit theorems for quantum stochastic models with unbounded coefficients , 2007, 0712.2276.

[8]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[9]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[10]  Hendra I. Nurdin,et al.  Commutativity of the adiabatic elimination limit of fast oscillatory components and the instantaneous feedback limit in quantum feedback networks , 2010, 1011.2027.

[11]  Hendra Ishwara Nurdin,et al.  Network Synthesis of Linear Dynamical Quantum Stochastic Systems , 2008, SIAM J. Control. Optim..

[12]  Panos Aliferis,et al.  Subsystem fault tolerance with the Bacon-Shor code. , 2007, Physical review letters.

[13]  Hideo Mabuchi,et al.  Continuous quantum error correction as classical hybrid control , 2009 .

[14]  Dmitri S. Pavlichin,et al.  Designing quantum memories with embedded control: photonic circuits for autonomous quantum error correction. , 2009, Physical review letters.

[15]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[16]  Gardiner,et al.  Wave-function quantum stochastic differential equations and quantum-jump simulation methods. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[17]  H. Carmichael An open systems approach to quantum optics , 1993 .