Sleeping beauty transposition from nonintegrating lentivirus.

[1]  Z. Izsvák,et al.  Hybrid lentivirus-transposon vectors with a random integration profile in human cells. , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[2]  Y. Asmann,et al.  A Transposon-Based Genetic Screen in Mice Identifies Genes Altered in Colorectal Cancer , 2009, Science.

[3]  Derek Y. Chiang,et al.  A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma , 2009, Nature Biotechnology.

[4]  Christine Kinnon,et al.  Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. , 2008, The Journal of clinical investigation.

[5]  Luis Apolonia,et al.  Stable gene transfer to muscle using non-integrating lentiviral vectors. , 2007, Molecular therapy : the journal of the American Society of Gene Therapy.

[6]  M. Kay,et al.  Postintegrative Gene Silencing within the Sleeping Beauty Transposition System , 2007, Molecular and Cellular Biology.

[7]  A. Thrasher,et al.  Lentiviral vectors for T-cell suicide gene therapy: preservation of T-cell effector function after cytokine-mediated transduction. , 2007, Molecular therapy : the journal of the American Society of Gene Therapy.

[8]  K. Yusa,et al.  Sleeping Beauty Transposase Has an Affinity for Heterochromatin Conformation , 2006, Molecular and Cellular Biology.

[9]  Sridhar Hannenhalli,et al.  Selection of Target Sites for Mobile DNA Integration in the Human Genome , 2006, PLoS Comput. Biol..

[10]  C. Hacker,et al.  The integration profile of EIAV-based vectors. , 2006, Molecular therapy : the journal of the American Society of Gene Therapy.

[11]  Xiuli Wang,et al.  Stable gene transfer to human CD34(+) hematopoietic cells using the Sleeping Beauty transposon. , 2006, Experimental hematology.

[12]  Xiao-Jin Yu,et al.  Transient gene expression by nonintegrating lentiviral vectors. , 2006, Molecular therapy : the journal of the American Society of Gene Therapy.

[13]  Clelia Di Serio,et al.  Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration , 2006, Nature Biotechnology.

[14]  S. E. Barker,et al.  Effective gene therapy with nonintegrating lentiviral vectors , 2006, Nature Medicine.

[15]  Daniel G. Miller,et al.  Large-Scale Analysis of Adeno-Associated Virus Vector Integration Sites in Normal Human Cells , 2005, Journal of Virology.

[16]  Corey M. Carlson,et al.  Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse , 2005, Nature.

[17]  S. Burgess,et al.  Weak Palindromic Consensus Sequences Are a Common Feature Found at the Integration Target Sites of Many Retroviruses , 2005, Journal of Virology.

[18]  Shawn M. Burgess,et al.  High-Resolution Genome-Wide Mapping of Transposon Integration in Mammals , 2005, Molecular and Cellular Biology.

[19]  S. Burgess,et al.  Integration target site selection for retroviruses and transposable elements , 2004, Cellular and Molecular Life Sciences CMLS.

[20]  F. Bushman,et al.  Retroviral DNA Integration: ASLV, HIV, and MLV Show Distinct Target Site Preferences , 2004, PLoS biology.

[21]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[22]  P. Jeggo,et al.  Healing the wounds inflicted by sleeping beauty transposition by double-strand break repair in mammalian somatic cells. , 2004, Molecular cell.

[23]  M. Kay,et al.  Nonhomologous-End-Joining Factors Regulate DNA Repair Fidelity during Sleeping Beauty Element Transposition in Mammalian Cells , 2003, Molecular and Cellular Biology.

[24]  Cameron S. Osborne,et al.  LMO2-Associated Clonal T Cell Proliferation in Two Patients after Gene Therapy for SCID-X1 , 2003, Science.

[25]  M. Kay,et al.  Helper-independent Sleeping Beauty Transposon–transposase Vectors for Efficient Nonviral Gene Delivery and Persistent Gene Expression in Vivo , 2022 .

[26]  D. Largaespada,et al.  Gene transfer into genomes of human cells by the sleeping beauty transposon system. , 2003, Molecular therapy : the journal of the American Society of Gene Therapy.

[27]  Shawn M. Burgess,et al.  Transcription Start Regions in the Human Genome Are Favored Targets for MLV Integration , 2003, Science.

[28]  M. Kay,et al.  Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo , 2002, Nature Biotechnology.

[29]  R. Plasterk,et al.  Involvement of a Bifunctional, Paired-like DNA-binding Domain and a Transpositional Enhancer in Sleeping BeautyTransposition* , 2002, The Journal of Biological Chemistry.

[30]  Paul Shinn,et al.  HIV-1 Integration in the Human Genome Favors Active Genes and Local Hotspots , 2002, Cell.

[31]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[32]  P. Hackett,et al.  Structure-function analysis of the inverted terminal repeats of the sleeping beauty transposon. , 2002, Journal of molecular biology.

[33]  Kathryn L. Parsley,et al.  High-level transduction and gene expression in hematopoietic repopulating cells using a human imunodeficiency virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter , 2002 .

[34]  R. Plasterk,et al.  Molecular Reconstruction of Sleeping Beauty , a Tc1-like Transposon from Fish, and Its Transposition in Human Cells , 1997, Cell.

[35]  Z. Izsvák,et al.  Identification of functional domains and evolution of Tc1-like transposable elements. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[36]  R. Palmiter,et al.  Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Anne E Carpenter,et al.  CellProfiler: free, versatile software for automated biological image analysis. , 2007, BioTechniques.

[38]  Christof von Kalle,et al.  and insertional genotoxicity Cell culture assays reveal the importance of retroviral vector design for , 2006 .