Average Case Analysis of High-Dimensional Block-Sparse Recovery and Regression for Arbitrary Designs

This paper studies conditions for highdimensional inference when the set of observations is given by a linear combination of a small number of groups of columns of a design matrix, termed the \block-sparse" case. In this regard, it rst species conditions on the design matrix under which most of its block submatrices are well conditioned. It then leverages this result for average-case analysis of high-dimensional block-sparse recovery and regression. In contrast to earlier works: (i) this paper provides conditions on arbitrary designs that can be explicitly computed in polynomial time, (ii) the provided conditions translate into near-optimal scaling of the number of observations with the number of active blocks of the design matrix, and (iii) the conditions suggest that the spectral norm, rather than the column/block coherences, of the design matrix fundamentally limits the performance of computational methods in high-dimensional settings.

[1]  Waheed U. Bajwa,et al.  Finite Frames for Sparse Signal Processing , 2013 .

[2]  S. Geer,et al.  Oracle Inequalities and Optimal Inference under Group Sparsity , 2010, 1007.1771.

[3]  Gregory Piatetsky-Shapiro,et al.  High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality , 2000 .

[4]  J. Tropp On the conditioning of random subdictionaries , 2008 .

[5]  A. Robert Calderbank,et al.  Conditioning of Random Block Subdictionaries With Applications to Block-Sparse Recovery and Regression , 2013, IEEE Transactions on Information Theory.

[6]  Bhaskar D. Rao,et al.  Sparse solutions to linear inverse problems with multiple measurement vectors , 2005, IEEE Transactions on Signal Processing.

[7]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[8]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[9]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Emmanuel J. Candès,et al.  Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions , 2004, Found. Comput. Math..

[11]  P. Bühlmann,et al.  The group lasso for logistic regression , 2008 .

[12]  Yonina C. Eldar,et al.  Block-Sparse Signals: Uncertainty Relations and Efficient Recovery , 2009, IEEE Transactions on Signal Processing.

[13]  M. Stojnic,et al.  $\ell_{2}/\ell_{1}$ -Optimization in Block-Sparse Compressed Sensing and Its Strong Thresholds , 2010, IEEE Journal of Selected Topics in Signal Processing.

[14]  Jong Chul Ye,et al.  Compressive MUSIC: Revisiting the Link Between Compressive Sensing and Array Signal Processing , 2012, IEEE Transactions on Information Theory.

[15]  A. Rinaldo,et al.  On the asymptotic properties of the group lasso estimator for linear models , 2008 .

[16]  Larry A. Wasserman,et al.  Union Support Recovery in Multi-task Learning , 2010, J. Mach. Learn. Res..

[17]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[18]  Gitta Kutyniok,et al.  Sparse Recovery From Combined Fusion Frame Measurements , 2009, IEEE Transactions on Information Theory.

[19]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[20]  Francis R. Bach,et al.  Consistency of the group Lasso and multiple kernel learning , 2007, J. Mach. Learn. Res..

[21]  Han Liu,et al.  Estimation Consistency of the Group Lasso and its Applications , 2009, AISTATS.

[22]  J. Tropp Norms of Random Submatrices and Sparse Approximation , 2008 .

[23]  Yonina C. Eldar,et al.  Rank Awareness in Joint Sparse Recovery , 2010, IEEE Transactions on Information Theory.

[24]  Yonina C. Eldar,et al.  Robust Recovery of Signals From a Structured Union of Subspaces , 2008, IEEE Transactions on Information Theory.

[25]  Dustin G. Mixon,et al.  Two are better than one: Fundamental parameters of frame coherence , 2011, 1103.0435.

[26]  J. Tropp Algorithms for simultaneous sparse approximation. Part II: Convex relaxation , 2006, Signal Process..

[27]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[28]  Yonina C. Eldar,et al.  Blind Multiband Signal Reconstruction: Compressed Sensing for Analog Signals , 2007, IEEE Transactions on Signal Processing.

[29]  Wenjiang J. Fu,et al.  Asymptotics for lasso-type estimators , 2000 .

[30]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[31]  Richard G. Baraniuk,et al.  Measurement Bounds for Sparse Signal Ensembles via Graphical Models , 2011, IEEE Transactions on Information Theory.

[32]  Yoram Bresler,et al.  Subspace Methods for Joint Sparse Recovery , 2010, IEEE Transactions on Information Theory.

[33]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[34]  Junzhou Huang,et al.  The Benefit of Group Sparsity , 2009 .

[35]  E. Candès,et al.  Near-ideal model selection by ℓ1 minimization , 2008, 0801.0345.

[36]  Joel A. Tropp,et al.  Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit , 2006, Signal Process..

[37]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[38]  P. Bickel,et al.  SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.

[39]  Jun Fang,et al.  Recovery of Block-Sparse Representations from Noisy Observations via Orthogonal Matching Pursuit , 2011, ArXiv.

[40]  E.J. Candes Compressive Sampling , 2022 .

[41]  Babak Hassibi,et al.  On the Reconstruction of Block-Sparse Signals With an Optimal Number of Measurements , 2008, IEEE Transactions on Signal Processing.

[42]  Emmanuel J. Cand The Restricted Isometry Property and Its Implications for Compressed Sensing , 2008 .

[43]  Robert D. Nowak,et al.  Causal Network Inference Via Group Sparse Regularization , 2011, IEEE Transactions on Signal Processing.

[44]  Zhou Fang,et al.  Sparse Group Selection Through Co-Adaptive Penalties , 2011, 1111.4416.

[45]  R. Richardson The International Congress of Mathematicians , 1932, Science.

[46]  H. Rauhut,et al.  Atoms of All Channels, Unite! Average Case Analysis of Multi-Channel Sparse Recovery Using Greedy Algorithms , 2008 .

[47]  Robert D. Nowak,et al.  Universal Measurement Bounds for Structured Sparse Signal Recovery , 2012, AISTATS.

[48]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[49]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[50]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[51]  Yonina C. Eldar,et al.  Average Case Analysis of Multichannel Sparse Recovery Using Convex Relaxation , 2009, IEEE Transactions on Information Theory.

[52]  Michael I. Jordan,et al.  Union support recovery in high-dimensional multivariate regression , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[53]  Yonina C. Eldar,et al.  Reduce and Boost: Recovering Arbitrary Sets of Jointly Sparse Vectors , 2008, IEEE Transactions on Signal Processing.

[54]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[55]  Helmut Bölcskei,et al.  Uncertainty Relations and Sparse Signal Recovery for Pairs of General Signal Sets , 2011, IEEE Transactions on Information Theory.

[56]  Dustin G. Mixon,et al.  Certifying the Restricted Isometry Property is Hard , 2012, IEEE Transactions on Information Theory.

[57]  Yonina C. Eldar,et al.  Structured Compressed Sensing: From Theory to Applications , 2011, IEEE Transactions on Signal Processing.

[58]  Shamgar Gurevich,et al.  Statistical RIP and Semi-Circle Distribution of Incoherent Dictionaries , 2009, ArXiv.

[59]  René Vidal,et al.  Block-Sparse Recovery via Convex Optimization , 2011, IEEE Transactions on Signal Processing.

[60]  Martin J. Wainwright,et al.  Sharp thresholds for high-dimensional and noisy recovery of sparsity , 2006, ArXiv.

[61]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .