Complex Carbocyclic Skeletons from Aryl Ketones through a Three‐Photon Cascade Reaction

Abstract Starting from readily available 7‐substituted 1‐indanones, products with a tetracyclo[5.3.1.01,704,11]undec‐2‐ene skeleton were obtained upon irradiation at λ=350 nm (eight examples, 49–67 % yield). The assembly of the structurally complex carbon framework proceeds in a three‐photon process comprising an ortho photocycloaddition, a disrotatory [4π] photocyclization, and a di‐π‐methane rearrangement. The flat aromatic core of the starting material is converted into a functionalized polycyclic hydrocarbon with exit vectors in three dimensions. Ring opening reactions at the central cyclopropane ring were explored, which enable the preparation of tricyclo[5.3.1.04,11]undec‐2‐enes and of tricyclo[6.2.1.01,5]undecanes.

[1]  C. Jandl,et al.  Concise Access to the Skeleton of Protoilludane Sesquiterpenes through a Photochemical Reaction Cascade: Total Synthesis of Atlanticone C , 2019, Angewandte Chemie.

[2]  Pavle J. Randjelović,et al.  Structural Elucidation of Presilphiperfolane-7α,8α-diol, a Bioactive Sesquiterpenoid from Pulicaria vulgaris: A Combined Approach of Solvent-Induced Chemical Shifts, GIAO Calculation of Chemical Shifts, and Full Spin Analysis. , 2019, Journal of natural products.

[3]  C. Jandl,et al.  Enantioselective Visible-Light-Mediated Formation of 3-Cyclopropylquinolones by Triplet-Sensitized Deracemization. , 2019, Angewandte Chemie.

[4]  F. Glorius,et al.  Dearomative Cascade Photocatalysis: Divergent Synthesis through Catalyst Selective Energy Transfer. , 2018, Journal of the American Chemical Society.

[5]  Francesco Secci,et al.  Preparation of Cyclobutene Acetals and Tricyclic Oxetanes through Photochemical Tandem and Cascade Reactions. , 2018, Angewandte Chemie.

[6]  T. Bach,et al.  Photochemical Reaction Cascade from O-Pent-4-enyl-Substituted Salicylates to Complex Multifunctional Scaffolds. , 2018, The Journal of organic chemistry.

[7]  Ł. Woźniak,et al.  Enantioselective Photochemical Organocascade Catalysis , 2017, Angewandte Chemie.

[8]  C. Boss,et al.  The Screening Compound Collection: A Key Asset for Drug Discovery. , 2017, Chimia.

[9]  F. Dumas,et al.  Tricyclic Sesquiterpenes from Marine Origin. , 2017, Chemical reviews.

[10]  J. Knowles,et al.  Conformationally Driven Two- and Three-Photon Cascade Processes in the Stereoselective Photorearrangement of Pyrroles. , 2016, Organic letters.

[11]  Y. M. Fobian,et al.  Modern advances in heterocyclic chemistry in drug discovery. , 2016, Organic & biomolecular chemistry.

[12]  C. Bochet,et al.  Arene-Alkene Cycloaddition. , 2016, Chemical reviews.

[13]  D. Schollmeyer,et al.  A Light-Induced Vinylogous Nazarov-Type Cyclization. , 2016, Organic letters.

[14]  M. Kärkäs,et al.  Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis , 2016, Chemical reviews.

[15]  M. Banwell,et al.  Applications of Di‐Π‐Methane and Related Rearrangement Reactions in Chemical Synthesis , 2015 .

[16]  U. Hennecke,et al.  Homohalocyclization: Electrophilic Bromine-Induced Cyclizations of Cyclopropanes. , 2015, Organic letters.

[17]  Brian M. Stoltz,et al.  Biosynthese und chemische Synthese von Presilphiperfolanolen , 2014 .

[18]  B. Stoltz,et al.  Biosynthesis and chemical synthesis of presilphiperfolanol natural products. , 2014, Angewandte Chemie.

[19]  M. Sharma,et al.  Generation of (+)-Prezizanol, (+)-Prezizaene, and the ent-β-Isopipitzol Framework via Cationic Rearrangement of Khusiol and Related Compounds , 2014 .

[20]  B. Stoltz,et al.  Use of a palladium(II)-catalyzed oxidative kinetic resolution in synthetic efforts toward bielschowskysin. , 2013, Tetrahedron.

[21]  J. Knowles,et al.  Complexity from simplicity: tricyclic aziridines from the rearrangement of pyrroles by batch and flow photochemistry. , 2013, Angewandte Chemie.

[22]  N. Hoffmann Photochemical reactions of aromatic compounds and the concept of the photon as a traceless reagent , 2012, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[23]  C. Marson,et al.  New and unusual scaffolds in medicinal chemistry. , 2011, Chemical Society reviews.

[24]  C. Bochet,et al.  The arene–alkene photocycloaddition , 2011, Beilstein journal of organic chemistry.

[25]  T. Bach,et al.  Photochemische Reaktionen als Schlüsselschritte in der Naturstoffsynthese , 2011 .

[26]  T. Bach,et al.  Photochemical reactions as key steps in natural product synthesis. , 2011, Angewandte Chemie.

[27]  C. Humblet,et al.  Escape from flatland: increasing saturation as an approach to improving clinical success. , 2009, Journal of medicinal chemistry.

[28]  H. L. Anderson,et al.  Zweiphotonenabsorption und das Design von Zweiphotonenfarbstoffen , 2009 .

[29]  Hazel A. Collins,et al.  Two-photon absorption and the design of two-photon dyes. , 2009, Angewandte Chemie.

[30]  C. Bochet,et al.  Recent Developments in Arene Photocycloadditions , 2008 .

[31]  N. Hoffmann,et al.  Photochemical reactions as key steps in organic synthesis. , 2008, Chemical reviews.

[32]  J. Mattay Die Photochemie der Aromaten – neu aufgelegt , 2007 .

[33]  J. Mattay Photochemistry of arenes--reloaded. , 2007, Angewandte Chemie.

[34]  A. Russell,et al.  From α-cedrene to crinipellin B and onward: 25 years of the alkene–arene meta-photocycloaddition reaction in natural product synthesis , 2006 .

[35]  N. Hoffmann Photochemical Cycloaddition Between Benzene Derivatives and Alkenes , 2004 .

[36]  P. Wagner,et al.  Dipole-mediated regioselectivity in the [2+2]-photocycloaddition of double bonds to triplet benzenes , 2002 .

[37]  H. Zimmerman,et al.  The diverted di-pi-methane rearrangement; mechanistic and exploratory organic photochemistry. , 2002, Organic letters.

[38]  H. Memarian,et al.  Photoreaction of 2-morpholinoacrylonitrile with substituted 1-acetonaphthones. Part II , 2001 .

[39]  P. Wagner Photoinduced ortho [2 + 2] cycloaddition of double bonds to triplet benzenes. , 2001, Accounts of chemical research.

[40]  H. Memarian,et al.  Photoaddition of 2‐Morpholinoacrylonitrile to Substituted 1‐Acetonaphthones , 1997 .

[41]  T. Horaguchi,et al.  Photocyclization reactions. Part 6†. Solvent and substituent effects in the synthesis of dihydrobenzofuranols using photocyclization of 2-alkoxybenzophenones and ethyl 2-benzoylphenoxyacetates , 1997 .

[42]  H. Zimmerman,et al.  Synthetic Aspects of the Di-pi-methane Rearrangement. , 1996, Chemical reviews.

[43]  Scott R. Wilson,et al.  Stereochemistry and Reactions of Presilphiperfolanol: A Branch Point Marker in Triquinane Sesquiterpene Biogenesis , 1996 .

[44]  T. Horaguchi,et al.  Photocyclization reactions. Part 3 . Synthesis of naphtho[1,8-bc]-furans and Cyclohepta[cd]benzofurans using photocyclization of 8-alkoxy-1,2,3,4-tetrahydro-1-naphthalenones and 4-alkoxy-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ones† , 1996 .

[45]  S. AlQaradawi,et al.  Factors influencing the reaction-mode selectivity and regiochemistry of intermolecular photocycloaddition reactions of ethenes to polysubstituted benzenes , 1995 .

[46]  T. Nakayama,et al.  Effects of water on the phosphorescence spectra of aromatic carbonyl compounds. Part 3.—Dual- or multiple-component phosphorescence of 1-indanone at 77 K in some protic solvents containing water , 1995 .

[47]  P. Wagner,et al.  CHIRAL AUXILIARIES PROMOTE BOTH DIASTEREOSELECTIVE CYCLOADDITION AND KINETIC RESOLUTION OF PRODUCTS IN THE ORTHO PHOTOCYCLOADDITION OF DOUBLE BONDS TO BENZENE RINGS , 1994 .

[48]  N. Turro,et al.  UV-vis absorption studies of singlet to triplet intersystem crossing rates of aromatic ketones: effects of molecular geometry , 1994 .

[49]  J. Cornelisse THE META PHOTOCYCLOADDITION OF ARENES TO ALKENES , 1993 .

[50]  J. B. Lambert,et al.  Polar bromination and chlorination of cyclopropane , 1990 .

[51]  H. Memarian,et al.  Photo Diels-Alder Additons, V1 1,4-Photoadditions of α-Morpholinoacrylonitrile to 1-Acylnaphthalenes , 1990 .

[52]  S. Nie,et al.  Near-infrared Fourier transform Raman spectroscopy of photolabile organocobalt B12 and model compounds. 1. Detection of the cobalt-carbon stretching mode in the solid state and in solution , 1989 .

[53]  B. Fuchs,et al.  Unusual photorearrangements of homoconjugated diacylcyclohexa-2,4-dienes , 1988 .

[54]  K. Nahm,et al.  Interconversion of bicyclooctadienes and cyclooctatrienes formed by intramolecular photocycloaddition of phenyl ketones containing remote double bonds , 1987 .

[55]  G. Ellis‐Davies,et al.  Intermolecular and intramolecular photocycloaddition reactions of fluoroarenes , 1985 .

[56]  W. Crow,et al.  Synthetic applications of intramolecular insertion in arylcarbenes. VII. Aryl-substituted benzocycloalkenylidenes , 1984 .

[57]  H. Cerfontain,et al.  Photochemistry of .beta.,.gamma.-enones. 7. Intramolecular competition between di-.pi.-methane and oxa-di-.pi.-methane rearrangements. On the intermediary of charge-transfer complexes and zwitterions in the di-.pi.-methane rearrangements , 1983 .

[58]  James D White,et al.  Tricyclo[5.3.0.01,6]decan-5-one and tricyclo[5.4.0.01,6]undecan-5-one. Synthesis and selective transformation to spiro and fused bicyclic systems , 1981 .

[59]  H. Gotthardt,et al.  Zur Photochemie des Allens , 1975 .

[60]  N. Yang,et al.  On the Phosphorescence of 1‐Indanone , 1966 .