Generation of a controllable optical cage by focusing a Laguerre-Gaussian correlated Schell-model beam.

We analyze the intensity of a Laguerre-Gaussian correlated Schell-model (LGCSM) beam focused by a thin lens near the focal region, and it is found that a controllable optical cage can be formed through varying the initial spatial coherence width. Furthermore, we carry out experimental measurement of the intensity of a focused LGCSM beam, and we observe that the optical cage is indeed formed in experiment. Our results will be useful for trapping particles or atoms.

[1]  Dorian Kermisch,et al.  Partially coherent image processing by laser scanning , 1975 .

[2]  Kunioki Mima,et al.  Random Phasing of High-Power Lasers for Uniform Target Acceleration and Plasma-Instability Suppression , 1984 .

[3]  A. Beléndez,et al.  The use of partially coherent light to reduce the efficiency of silver halide noise gratings , 1993 .

[4]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[5]  J. Ricklin,et al.  Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  Yangjian Cai,et al.  Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams. , 2002, Optics letters.

[7]  Yangjian Cai,et al.  Ghost imaging with incoherent and partially coherent light radiation. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Yangjian Cai,et al.  Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere , 2006 .

[9]  Yangjian Cai,et al.  Second-harmonic generation by an astigmatic partially coherent beam. , 2007, Optics express.

[10]  E. Wolf Introduction to the Theory of Coherence and Polarization of Light , 2007 .

[11]  P. Meystre Introduction to the Theory of Coherence and Polarization of Light , 2007 .

[12]  F. Gori,et al.  Devising genuine spatial correlation functions. , 2007, Optics Letters.

[13]  Yangjian Cai,et al.  Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[14]  O. Korotkova,et al.  Scintillation of nonuniformly polarized beams in atmospheric turbulence. , 2009, Optics letters.

[15]  Franco Gori,et al.  On genuine cross-spectral density matrices , 2009 .

[16]  Xiaodong He,et al.  Trapping a single atom in a blue detuned optical bottle beam trap. , 2010, Optics letters.

[17]  David G. Fischer,et al.  Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere. , 2010 .

[18]  Yaoju Zhang,et al.  Trapping two types of particles using a double-ring-shaped radially polarized beam , 2010 .

[19]  Toni Saastamoinen,et al.  Propagation characteristics of partially coherent beams with spatially varying correlations. , 2011, Optics letters.

[20]  Yangjian Cai,et al.  Detection of a semirough target in turbulent atmosphere by a partially coherent beam. , 2011, Optics letters.

[21]  Yangjian Cai,et al.  Trapping two types of particles using a focused partially coherent elegant Laguerre-Gaussian beam. , 2011, Optics letters.

[22]  Olga Korotkova,et al.  Light sources generating far fields with tunable flat profiles. , 2012, Optics letters.

[23]  Olga Korotkova,et al.  Nonuniformly correlated light beams in uniformly correlated media. , 2012, Optics letters.

[24]  Yangjian Cai,et al.  Effect of spatial coherence on propagation, tight focusing, and radiation forces of an azimuthally polarized beam , 2012 .

[25]  Olga Korotkova,et al.  Multi-Gaussian Schell-model beams. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  Yangjian Cai,et al.  Experimental generation of partially coherent beams with different complex degrees of coherence. , 2013, Optics letters.

[27]  Olga Korotkova,et al.  Cosine-Gaussian Schell-model sources. , 2013, Optics letters.

[28]  Olga Korotkova,et al.  Random sources generating ring-shaped beams. , 2013, Optics letters.

[29]  X. Liu,et al.  Propagation of Laguerre–Gaussian and Bessel–Gaussian Schell-model beams through paraxial optical systems in turbulent atmosphere , 2013 .

[30]  C. Liang,et al.  Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere , 2013 .

[31]  Fei Wang,et al.  Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere , 2013 .

[32]  Fei Wang,et al.  Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam. , 2013, Optics letters.

[33]  Olga Korotkova,et al.  Propagation of cosine-Gaussian-correlated Schell-model beams in atmospheric turbulence. , 2013, Optics express.

[34]  Fei Wang,et al.  Statistical properties of a Laguerre-Gaussian Schell-model beam in turbulent atmosphere. , 2014, Optics express.

[35]  Olga Korotkova,et al.  Generation and propagation of a partially coherent vector beam with special correlation functions , 2014 .

[36]  Olga Korotkova,et al.  Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry. , 2014, Optics letters.