Evaluation of the RPM-CN approach for broadband combustion noise prediction

The derivation and validation of a broadband combustion noise model is presented. The applied RPM-CN approach, a hybrid CFD/CAA approach relies on the stochastic reconstruction of combustion noise sources in the time domain. The stochastic reconstruction is conducted by the RPM method out of statistical turbulence quantities which can be delivered by a reacting RANS simulation. In the present work, the modeled combustion noise sources are derived for the use in conjunction with the LEE for the computation of the acoustic propagation. The DLR-A and the DLR-B ames, both non-premixed open jet ames which dierentiate in the fuel outlet velocity and the respective Reynolds number, are used for the validation of the RPM-CN approach. Results of the reacting ow computations and the subsequent acoustic predictions are compared to measurements and discussed. The reliability and accuracy of the RPM-CN approach will be demonstrated by a good agreement of the computed sound pressure level spectra with the experimental data.

[1]  J. Janicka,et al.  Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames , 2003 .

[2]  Jay P. Gore,et al.  Study of Spectral Noise Emissions from Standard Turbulent Nonpremixed Flames , 2004 .

[3]  Felix Alexander Flemming On the Simulation of Noise Emissions by Turbulent Non-Premixed Flames , 2007 .

[4]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[5]  Sébastien Candel,et al.  Stochastic approach to noise modeling for free turbulent flows , 1994 .

[6]  Johannes Janicka,et al.  Investigation of combustion noise using a LES/CAA hybrid approach , 2007 .

[7]  Jeff M. Mendoza,et al.  Combustion Noise of Auxiliary Power Units , 2005 .

[8]  Thomas Sattelmayer,et al.  A spectral model for the sound pressure from turbulent premixed combustion , 2007 .

[9]  Lars-Erik Eriksson,et al.  Large-Eddy Simulation of Subsonic Turbulent Jets and Their Radiated Sound , 2005 .

[10]  R. Kraichnan Diffusion by a Random Velocity Field , 1970 .

[11]  Umr Cnrs,et al.  A Stochastic Approach To Compute Subsonic-Noise Using Linearized Euler's Equations* , 1999 .

[12]  C. Tam,et al.  Jet Mixing Noise from Fine-Scale Turbulence , 1998 .

[13]  M.Y. Hussaini,et al.  Low-Dissipation and Low-Dispersion Runge-Kutta Schemes for Computational Acoustics , 1994 .

[14]  V. L. Zimont,et al.  Gas premixed combustion at high turbulence. Turbulent flame closure combustion model , 2000 .

[15]  Roland Ewert CAA Slat Noise Studies Applying Stochastic Sound Sources Based On Solenoidal Digital Filters , 2005 .

[16]  Lars-Erik Eriksson,et al.  Jet Noise Prediction Using Stochastic Turbulence Modeling , 2003 .

[17]  Nicolas Noiray,et al.  Flame Dynamics and Combustion Noise: Progress and Challenges , 2009 .

[18]  Manfred Aigner,et al.  Multi-Variate Assumed PDF Modeling of Turbulent Sub- and Supersonic Combustion , 2007 .

[19]  Wolfgang Schröder,et al.  Numerical analysis of the acoustic field of reacting flows via acoustic perturbation equations , 2008 .

[20]  Roland Ewert Slat Noise Trend Predictions Using CAA With Stochastic Sound Sources From A Random Particle-Mesh Method (RPM) , 2006 .

[21]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[22]  Heinz Pitsch,et al.  Prediction of combustion-generated noise in non-premixed turbulent jet flames using large-eddy simulation , 2006 .

[23]  Robert S. Barlow,et al.  Raman/Rayleigh/LIF Measurements in a Turbulent CH4/H2/N2 Jet Diffusion Flame: Experimental Techniques and Turbulence-Chemistry Interaction , 2000 .

[24]  J. Seiner,et al.  On the Two Components of Turbulent Mixing Noise from Supersonic Jets , 1996 .

[25]  Sébastien Candel,et al.  Computation of noise generation and propagation for free and confined turbulent flows , 1996 .

[26]  Roland Ewert,et al.  Spectral broadening of jet engine turbine tones , 2008 .

[27]  Georgi Kalitzin,et al.  A factorization scheme for RANS turbulence models and SNGR predictions of trailing edge noise , 2000 .

[28]  Winfried Stricker,et al.  Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame , 1998 .

[29]  Heinz Pitsch,et al.  Numerical Investigation of Combustion Noise and Sound Source Mechanisms in a Non-Premixed Flame Using LES and APE-RF , 2007 .

[30]  Roland Ewert,et al.  RPM - the fast Random Particle-Mesh method to realize unsteady turbulent sound sources and velocity fields for CAA applications. , 2007 .

[31]  Peter Gerlinger Numerische Verbrennungssimulation : effiziente numerische Simulation turbulenter Verbrennung , 2005 .

[32]  Manfred Aigner,et al.  Simulation of combustion noise using CAA with stochastic sound sources from RANS , 2008 .

[33]  Stephane Redonnet,et al.  NUMERICAL SIMULATION OF AERODYNAMIC NOISE , 2004 .

[34]  R. Ewert Broadband slat noise prediction based on CAA and stochastic sound sources from a fast random particle-mesh (RPM) method , 2008 .