We have monitored by computer simulations quantities related to the spatial organization of random cellular Boolean nets during the limit cycles such as the local periods of automata, the global period of the whole net, and percolation of the oscillating structures, and shown that they obey a phase transition for the same value of the transition parameter as found by Derrida and Stauffer from overlaps between initially different configurations Nous avons etudie par simulation sur ordinateur l'apparition de structures spatiales dans les cycles limites des reseaux aleatoires d'automates cellulaires Booleens. Ces mesures ont porte sur les periodes locales des automates comparees a la periode globale du reseau et sur la percolation des structures oscillantes. Le seuil de percolation de ces structures est le meme que celui observe par Derrida et Stauffer pour le comportement des distances entre configurations initialement differentes
[1]
S. Kauffman.
Metabolic stability and epigenesis in randomly constructed genetic nets.
,
1969,
Journal of theoretical biology.
[2]
B. Derrida,et al.
Phase Transitions in Two-Dimensional Kauffman Cellular Automata
,
1986
.
[3]
B. Derrida,et al.
Random networks of automata: a simple annealed approximation
,
1986
.
[4]
Françoise Fogelman-Soulié,et al.
Parallel and Sequential Computation on Boolean Networks
,
1985,
Theor. Comput. Sci..
[5]
S. Redner,et al.
Introduction To Percolation Theory
,
2018
.