Computational geometry

Computational geometry [Edelsbrunner 1987; Preparata and Shamos 1985] evolves from the classical discipline of design and analysis of algorithms. It is concerned with the computational complexity of geometric problems that arise in various disciplines such as pattern recognition, computer graphics, computer vision, robotics, VLSI layout, operations research, statistics, and so on. In contrast with the classical approach to proving mathematical theorems about geometry-related problems, this discipline emphasizes the computational aspect of these problems and attempts to exploit the underlying geometric properties possible, for example, the metric space, to derive efficient algorithmic solutions. An objective of this discipline in the theoretical context is to study the intrinsic difficulty of geometric computation under a certain computation model and to devise provably efficient algorithms for the problems at hand. The measure of intrinsic difficulty of a geometric problem or efficiency of an algorithm is in terms of time and space complexities when the problem size tends to `. This is the so-called asymptotic computational complexity. Traditionally there are two types of complexity analysis of the asymptotic behavior of an algorithm: worst-case analysis and average-case analysis. In the former, the behavior of the algorithm with respect to the worst possible case of the input instance is considered, whereas in the latter, the expected behavior is considered when the input is randomly drawn from a given distribution. Recently the notion of randomized algorithms has emerged as an important area of study within algorithm design and analysis. Similar to average-case analysis, the analysis of randomized algorithms is also probabilistic with the exception that in the latter the input instance is fixed whereas the steps taken by the algorithm are random and governed by the outcomes of some probabilistic event, for example, the toss of a coin. Due to its applications to various science and engineering related disciplines, researchers in computational geometry have begun to address the efficacy of the algorithms; the issues concerning robustness and numerical stability [Fortune 1993] and the actual running times of their implementations have now become centers of attention as well. We concentrate here on the theoretical development of this field in the context of sequential computation. We adopt the real RAM (random-access machine) model of computation in which all arithmetic operations, comparisons, kth-root, exponential, or logarithmic functions take unit time. For more details refer to [Preparata and Shamos 1985]. Those who are interested in the implementations or would like more information about available software may consult the Proceedings of the Annual ACM Symposium on Computational Geometry, which has a video session, or the WWW page on Geometry in Action

[1]  Alok Aggarwal,et al.  Geometric applications of a matrix-searching algorithm , 1987, SCG '86.

[2]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[3]  Raimund Seidel,et al.  On the difficulty of triangulating three-dimensional Nonconvex Polyhedra , 1992, Discret. Comput. Geom..

[4]  Dan E. Willard,et al.  New Data Structures for Orthogonal Range Queries , 1985, SIAM J. Comput..

[5]  Joseph S. B. Mitchell,et al.  Shortest paths among obstacles in the plane , 1993, SCG '93.

[6]  Tiow Seng Tan,et al.  A quadratic time algorithm for the minmax length triangulation , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[7]  Nancy M. Amato Determining the separation of simple polygons , 1994, Int. J. Comput. Geom. Appl..

[8]  Takao Asano,et al.  Partitioning a polygonal region into trapezoids , 1986, JACM.

[9]  Rolf Klein,et al.  Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.

[10]  Der-Tsai Lee Proximity and reachability in the plane. , 1978 .

[11]  Leonidas J. Guibas,et al.  A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..

[12]  David P. Dobkin,et al.  Optimal Time Minimal Space Selection Algorithms , 1981, JACM.

[13]  Bernard Chazelle,et al.  How to Search in History , 1983, Inf. Control..

[14]  Bernard Chazelle,et al.  A deterministic view of random sampling and its use in geometry , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[15]  Michiel H. M. Smid,et al.  New techniques for exact and approximate dynamic closest-point problems , 1994, SCG '94.

[16]  Kenneth L. Clarkson,et al.  A Randomized Algorithm for Closest-Point Queries , 1988, SIAM J. Comput..

[17]  Godfried T. Toussaint,et al.  Computing the Width of a Set , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  David G. Kirkpatrick,et al.  A Linear Algorithm for Determining the Separation of Convex Polyhedra , 1985, J. Algorithms.

[19]  David M. Mount,et al.  An Output Sensitive Algorithm for Computing Visibility Graphs , 1987, FOCS.

[20]  John Beidler,et al.  Data Structures and Algorithms , 1996, Wiley Encyclopedia of Computer Science and Engineering.

[21]  Leonidas J. Guibas,et al.  Diameter, width, closest line pair, and parametric searching , 1992, SCG '92.

[22]  Raimund Seidel,et al.  Constructing arrangements of lines and hyperplanes with applications , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[23]  Bernard Chazelle,et al.  A Functional Approach to Data Structures and Its Use in Multidimensional Searching , 1988, SIAM J. Comput..

[24]  Kurt Swanson An Optimal Algorithm for Roundness Determination on Convex Polygons , 1993, WADS.

[25]  Mario A. López,et al.  Generalized intersection searching problems , 1993, Int. J. Comput. Geom. Appl..

[26]  Micha Sharir,et al.  On translational motion planning in 3-space , 1994, SCG '94.

[27]  Franco P. Preparata,et al.  Plane-sweep algorithms for intersecting geometric figures , 1982, CACM.

[28]  D. T. Lee,et al.  Out-of-Roundness Problem Revisited , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Kurt Mehlhorn,et al.  Multi-dimensional searching and computational geometry , 1984 .

[30]  Michiel H. M. Smid Maintaining the minimal distance of a point set in polylogarithmic time , 1991, SODA '91.

[31]  D. T. Lee,et al.  Generalized delaunay triangulation for planar graphs , 1986, Discret. Comput. Geom..

[32]  David G. Kirkpatrick,et al.  The Ultimate Planar Convex Hull Algorithm? , 1986, SIAM J. Comput..

[33]  Jean-Daniel Boissonnat,et al.  A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[34]  D. T. Lee,et al.  Shortest rectilinear paths among weighted obstacles , 1990, SCG '90.

[35]  Subhash Suri,et al.  On some link distance problems in a simple polygon , 1990, IEEE Trans. Robotics Autom..

[36]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[37]  David Avis,et al.  How good are convex hull algorithms? , 1995, SCG '95.

[38]  Robert E. Tarjan,et al.  Scaling and related techniques for geometry problems , 1984, STOC '84.

[39]  Leonidas J. Guibas,et al.  Computing convolutions by reciprocal search , 1986, SCG '86.

[40]  Alain Fournier,et al.  Triangulating Simple Polygons and Equivalent Problems , 1984, TOGS.

[41]  Nancy M. Amato,et al.  The parallel 3D convex hull problem revisited , 1992, Int. J. Comput. Geom. Appl..

[42]  Chee-Keng Yap,et al.  Towards Exact Geometric Computation , 1997, Comput. Geom..

[43]  Bernard Chazelle,et al.  An optimal algorithm for intersecting three-dimensional convex polyhedra , 1989, 30th Annual Symposium on Foundations of Computer Science.

[44]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[45]  Martin E. Dyer,et al.  On a Multidimensional Search Technique and its Application to the Euclidean One-Centre Problem , 1986, SIAM J. Comput..

[46]  Bernard Chazelle,et al.  Filtering search: A new approach to query-answering , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[47]  Bernard Chazelle,et al.  Point Location Among Hyperplanes and Unidirectional Ray-shooting , 1994, Comput. Geom..

[48]  Mariette Yvinec,et al.  Voronoi Diagrams in Higher Dimensions under Certain Polyhedral Distance Functions , 1995, SCG '95.

[49]  Godfried T. Toussaint,et al.  An Efficient Algorithm for Decomposing a Polygon into Star-Shaped Polygons , 1981 .

[50]  Herbert Edelsbrunner,et al.  An O(n log² h) Time Algorithm for the Three-Dimensional Convex Hull Problem , 1991, SIAM J. Comput..

[51]  David G. Kirkpatrick,et al.  Fast Detection of Polyhedral Intersection , 1983, Theor. Comput. Sci..

[52]  B. Schaudt Multiplicatively Weighted Crystal Growth Voronoi Diagrams , 1991 .

[53]  Harry G. Mairson,et al.  Reporting and Counting Intersections Between Two Sets of Line Segments , 1988 .

[54]  Bernard Chazelle,et al.  Halfspace range search: an algorithmic application of K-sets , 1985, SCG '85.

[55]  Otfried Cheong,et al.  The Voronoi Diagram of Curved Objects , 1995, SCG '95.

[56]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[57]  David Avis,et al.  Triangulating point sets in space , 1987, Discret. Comput. Geom..

[58]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[59]  T. Shermer Recent Results in Art Galleries , 1992 .

[60]  Micha Sharir,et al.  Intersection and Closest-Pair Problems for a Set of Planar Discs , 1985, SIAM J. Comput..

[61]  Chak-Kuen Wong,et al.  Rectilinear Paths Among Rectilinear Obstacles , 1992, Discret. Appl. Math..

[62]  D. T. Lee,et al.  An Improved Algorithm for the Rectangle Enclosure Problem , 1982, J. Algorithms.

[63]  Bernard Chazelle,et al.  Triangulating a non-convex polytype , 1989, SCG '89.

[64]  Sergei Bespamyatnikh,et al.  An Optimal Algorithm for Closest-Pair Maintenance , 1998, Discret. Comput. Geom..

[65]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[66]  Athanasios K. Tsakalidis,et al.  Computing Rectangle Enclosures , 1992, Comput. Geom..

[67]  Leonidas J. Guibas,et al.  Walking on an arrangement topologically , 1991, SCG '91.

[68]  Hiroshi Imai,et al.  Orthogonal Weighted Linear L1 and L∞ Approximation and Applications , 1993, Discret. Appl. Math..

[69]  Otfried Cheong,et al.  Euclidean minimum spanning trees and bichromatic closest pairs , 1990, SCG '90.

[70]  Herbert S. Wilf,et al.  Algorithms and Complexity , 1994, Lecture Notes in Computer Science.

[71]  Susan E. Dorward A survey of object-space hidden surface removal , 1994, Int. J. Comput. Geom. Appl..

[72]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[73]  Bernard Chazelle,et al.  On linear-time deterministic algorithms for optimization problems in fixed dimension , 1996, SODA '93.

[74]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[75]  Joseph O'Rourke,et al.  Some NP-hard polygon decomposition problems , 1983, IEEE Trans. Inf. Theory.

[76]  George S. Lueker,et al.  Adding range restriction capability to dynamic data structures , 1985, JACM.

[77]  Jon Louis Bentley,et al.  Decomposable Searching Problems I: Static-to-Dynamic Transformation , 1980, J. Algorithms.

[78]  Herbert Edelsbrunner,et al.  Computing the Extreme Distances Between Two Convex Polygons , 1985, J. Algorithms.

[79]  D. Du,et al.  Computing in Euclidean Geometry , 1995 .

[80]  Ivan J. Balaban,et al.  An optimal algorithm for finding segments intersections , 1995, SCG '95.

[81]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[82]  Kenneth L. Clarkson,et al.  A fast Las Vegas algorithm for triangulating a simple polygon , 1988, SCG '88.

[83]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..

[84]  Subhash Suri,et al.  Efficient computation of Euclidean shortest paths in the plane , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[85]  Robert E. Tarjan,et al.  An O(n log log n)-Time Algorithm for Triangulating a Simple Polygon , 1988, SIAM J. Comput..

[86]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[87]  Nimrod Megiddo,et al.  Towards a Genuinely Polynomial Algorithm for Linear Programming , 1983, SIAM J. Comput..

[88]  Kurt Mehlhorn,et al.  Data Structures and Algorithms 3: Multi-dimensional Searching and Computational Geometry , 2012, EATCS Monographs on Theoretical Computer Science.

[89]  John F. Canny,et al.  New lower bound techniques for robot motion planning problems , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[90]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[91]  J. Mark Keil,et al.  Decomposing a Polygon into Simpler Components , 1985, SIAM J. Comput..

[92]  Subhash Suri,et al.  Matrix searching with the shortest path metric , 1993, SIAM J. Comput..

[93]  Joseph S. B. Mitchell,et al.  The weighted region problem: finding shortest paths through a weighted planar subdivision , 1991, JACM.

[94]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[95]  Timothy M. Chan Output-sensitive results on convex hulls, extreme points, and related problems , 1995, SCG '95.

[96]  Leonidas J. Guibas,et al.  Optimal shortest path queries in a simple polygon , 1987, SCG '87.

[97]  Jirí Matousek,et al.  A deterministic algorithm for the three-dimensional diameter problem , 1993, STOC '93.

[98]  Bernard Chazelle,et al.  Triangulation and shape-complexity , 1984, TOGS.

[99]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[100]  Jan van Leeuwen,et al.  Dynamization of Decomposable Searching Problems , 1980, Inf. Process. Lett..

[101]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[102]  Franz Aurenhammer A New Duality Result Concerning Voronoi Diagrams , 1986, ICALP.

[103]  D. T. Lee,et al.  Generalization of Voronoi Diagrams in the Plane , 1981, SIAM J. Comput..

[104]  Marshall W. Bern,et al.  Linear-size nonobtuse triangulation of polygons , 1994, SCG '94.

[105]  A. F. Adams,et al.  The Survey , 2021, Dyslexia in Higher Education.

[106]  Bruce L. Golden,et al.  Location on networks: Theory and algorithms, Gabriel Handler and Pitu Mirchandani, MIT Press, Cambridge, 1979, 233 pp. Price: $20.00 , 1980, Networks.

[107]  Mark H. Overmars,et al.  The Design of Dynamic Data Structures , 1987, Lecture Notes in Computer Science.

[108]  Bernard Chazelle,et al.  On the convex layers of a planar set , 1985, IEEE Trans. Inf. Theory.

[109]  David G. Kirkpatrick,et al.  Polygon triangulation in O(n log log n) time with simple data-structures , 1990, SCG '90.

[110]  Edgar A. Ramos Construction of 1-d lower envelopes and applications , 1997, SCG '97.

[111]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[112]  Luca Cardelli,et al.  The Computer Science and Engineering Handbook , 1997 .

[113]  Anna Lubiw The Boolean Basis Problem and How to Cover Some Polygons by Rectangles , 1990, SIAM J. Discret. Math..

[114]  Micha Sharir,et al.  On shortest paths amidst convex polyhedra , 1987, SCG '86.

[115]  共立出版株式会社 コンピュータ・サイエンス : ACM computing surveys , 1978 .