Positive solutions for some non-autonomous Schrödinger–Poisson systems

Abstract In this paper we study the Schrodinger–Poisson system (SP) { − Δ u + u + K ( x ) ϕ ( x ) u = a ( x ) | u | p − 1 u , x ∈ R 3 , − Δ ϕ = K ( x ) u 2 , x ∈ R 3 , with p ∈ ( 3 , 5 ) . Assuming that a : R 3 → R and K : R 3 → R are nonnegative functions such that lim | x | → ∞ a ( x ) = a ∞ > 0 , lim | x | → ∞ K ( x ) = 0 and satisfying suitable assumptions, but not requiring any symmetry property on them, we prove the existence of positive solutions.

[1]  K Fan,et al.  Minimax Theorems. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Pierre-Louis Lions,et al.  A ecessary and Sufficient Condition for The Stability of General molecular Systems , 1992 .

[3]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, II existence of infinitely many solutions , 1983 .

[4]  W. Rother,et al.  Nonlinear scalar field equations , 1992, Differential and Integral Equations.

[5]  Pierre-Louis Lions,et al.  Solutions of Hartree-Fock equations for Coulomb systems , 1987 .

[6]  M. Kwong Uniqueness of positive solutions of Δu−u+up=0 in Rn , 1989 .

[7]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[8]  Pierre-Louis Lions,et al.  On the existence of a positive solution of semilinear elliptic equations in unbounded domains , 1997 .

[9]  E. Lieb Thomas-fermi and related theories of atoms and molecules , 1981 .

[10]  I. Ekeland On the variational principle , 1974 .

[11]  Elliott H. Lieb,et al.  A Relation Between Pointwise Convergence of Functions and Convergence of Functionals , 1983 .

[12]  G. Cerami,et al.  The effect of concentrating potentials in some singularly perturbed problems , 2003 .

[13]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[14]  G. Cerami Some Nonlinear Elliptic Problems in Unbounded Domains , 2006 .

[15]  Antonio Ambrosetti,et al.  On Schrödinger-Poisson Systems , 2008 .

[16]  B. Gidas,et al.  Symmetry and related properties via the maximum principle , 1979 .

[17]  Pierre-Louis Lions,et al.  Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. Part 2 : Stability is equivalent to the binding of neutral subsystems , 1993 .

[18]  Vieri Benci,et al.  An eigenvalue problem for the Schrödinger-Maxwell equations , 1998 .

[19]  Vieri Benci,et al.  SOLITARY WAVES OF THE NONLINEAR KLEIN-GORDON EQUATION COUPLED WITH THE MAXWELL EQUATIONS , 2002 .

[20]  Elliott H. Lieb,et al.  The Thomas—Fermi—von Weizsäcker Theory of Atoms and Molecules , 1981 .