Modelling of Left-Truncated Heavy-Tailed Data with Application to Catastrophe Bond Pricing

Abstract In this article, we concentrate on modelling heavy-tailed data which can be subjected to left-truncation. We modify an existing procedure for modelling left-truncated data via a compound non-homogeneous Poisson process to make it systematically applicable in the context heavy-tailed data. The introduced procedure can be applied when the underlying severities of the process follow Burr type XII, Generalised Pareto and Generalised Extreme Value distributions by using the Maximum Product of Spacings (MPS) parameter estimation technique. As a natural consequence of the MPS technique, we consider how Moran’s log spacings statistic for testing goodness-of-fit of the severity distributions can be adapted to suit left-truncated data. Thereafter, we compare the performance of this new fitting procedure against traditional maximum likelihood estimation in the context of natural catastrophe loss data, and evidence in favour of MPS is found. Within the context of these data, we also compare our procedure to a one that does not account for left-truncation. We end our contribution by proposing, for our modelling procedure, a Monte Carlo importance sampling algorithm which ensures that large losses are satisfactorily simulated. In closing, we illustrate the potential usage of both the new fitting and simulation procedures by presenting catastrophe bond prices with a trigger based on the analysed heavy-tailed data.

[1]  S. Asmussen,et al.  Rare events simulation for heavy-tailed distributions , 2000 .

[2]  P. Embrechts,et al.  Quantitative models for operational risk: Extremes, dependence and aggregation , 2006 .

[3]  Zongming Ma,et al.  Pricing catastrophe risk bonds: A mixed approximation method , 2013 .

[4]  Pure Risk Premiums under Deductibles , 2005 .

[5]  P. Cizeau,et al.  CORRELATIONS IN ECONOMIC TIME SERIES , 1997, cond-mat/9706021.

[6]  Mary A. Weiss,et al.  Convergence of Insurance and Financial Markets: Hybrid and Securitized Risk-Transfer Solutions , 2009 .

[7]  W. K. Li,et al.  A note on the estimation of extreme value distributions using maximum product of spacings , 2006 .

[8]  T. Gastaldi A Kolmogorov-Smirnov test procedure involving a possibly censored or truncated sample , 1992 .

[9]  PAUL EMBRECHTS,et al.  Modelling of extremal events in insurance and finance , 1994, Math. Methods Oper. Res..

[10]  Rosario N. Mantegna,et al.  Book Review: An Introduction to Econophysics, Correlations, and Complexity in Finance, N. Rosario, H. Mantegna, and H. E. Stanley, Cambridge University Press, Cambridge, 2000. , 2000 .

[11]  Olivier Guilbaud,et al.  Exact Kolmogorov-Type Tests for Left-Truncated and/or Right-Censored Data , 1988 .

[12]  Bakhodir A Ergashev,et al.  Estimation of Truncated Data Samples in Operational Risk Modeling , 2014 .

[13]  Dirk P. Kroese,et al.  Improved algorithms for rare event simulation with heavy tails , 2006, Advances in Applied Probability.

[14]  P. Nowak,et al.  Pricing and simulations of catastrophe bonds , 2013 .

[15]  Tao Wang,et al.  Pricing perpetual American catastrophe put options: A penalty function approach , 2009 .

[16]  A. Chechkin,et al.  Discriminating between Light- and Heavy-Tailed Distributions with Limit Theorem , 2015, PloS one.

[17]  R. Weron,et al.  Property insurance loss distributions , 2000 .

[18]  R. Dufour,et al.  Distribution Results for Modified Kolmogorov- Smirnov Statistics for Truncated or Censored , 1978 .

[19]  Hanspeter Schmidli,et al.  Pricing catastrophe insurance products based on actually reported claims , 2000 .

[20]  Xavier Gabaix,et al.  Economic fluctuations and statistical physics: Quantifying extremely rare and less rare events in finance , 2007 .

[21]  H. F. Coronel-Brizio,et al.  On fitting the Pareto-Levy distribution to stock market index data: selecting a suitable cutoff value , 2004, cond-mat/0411161.

[22]  Pavel V. Shevchenko,et al.  Addressing the Impact of Data Truncation and Parameter Uncertainty on Operational Risk Estimates , 2007 .

[23]  Roberto Ugoccioni,et al.  Sources of uncertainty in modeling operational risk losses , 2006 .

[24]  Michel L. Goldstein,et al.  Problems with fitting to the power-law distribution , 2004, cond-mat/0402322.

[25]  Brenda López Cabrera,et al.  Calibrating Cat Bonds for Mexican Earthquakes , 2007 .

[26]  Min-Teh Yu,et al.  Valuation of catastrophe reinsurance with catastrophe bonds , 2007 .

[27]  Russell C. H. Cheng,et al.  A goodness-of-fit test using Moran's statistic with estimated parameters , 1989 .

[28]  Bo Ranneby,et al.  The Maximum Spacing Method. An Estimation Method Related to the Maximum Likelihood Method , 2016 .

[29]  Svetlozar T. Rachev,et al.  Composite Goodness-of-Fit Tests for Left-Truncated Loss Samples , 2015 .

[30]  K. Burnecki,et al.  Stability and lack of memory of the returns of the Hang Seng index , 2011 .

[31]  Krzysztof Burnecki,et al.  Modelling catastrophe claims with left-truncated severity distributions , 2006, Comput. Stat..

[32]  Min-Teh Yu,et al.  Pricing Default-Risky Cat Bonds with Moral Hazard and Basis Risk , 2002 .

[33]  Harry H. Panjer,et al.  Insurance Risk Models , 1992 .

[34]  K. Burnecki,et al.  Pricing of zero-coupon and coupon cat bonds , 2003 .

[35]  Giorgio Fagiolo,et al.  On Approximating the Distributions of goodness-of-Fit Test Statistics Based on the Empirical Distribution Function: the Case of Unknown Parameters , 2009, Adv. Complex Syst..

[36]  T. Meyer-Brandis,et al.  Pricing of Catastrophe Insurance Options Under Immediate Loss Reestimation , 2008, Journal of Applied Probability.

[37]  Russell C. H. Cheng,et al.  Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin , 1983 .

[38]  V. Plerou,et al.  Econophysics: financial time series from a statistical physics point of view , 2000 .

[39]  Alexander Braun,et al.  Pricing catastrophe swaps: A contingent claims approach , 2011 .

[40]  Takvor H. Soukissian,et al.  The effect of the generalized extreme value distribution parameter estimation methods in extreme wind speed prediction , 2015, Natural Hazards.

[41]  William R. Schucany,et al.  Robust and Efficient Estimation for the Generalized Pareto Distribution , 2004 .

[42]  Angelos Dassios,et al.  Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity , 2003, Finance Stochastics.

[43]  S. Jaimungal,et al.  Catastrophe options with stochastic interest rates and compound Poisson losses , 2006 .

[44]  P. Shevchenko,et al.  Modeling operational risk data reported above a time-varying threshold , 2009, 0904.4075.

[45]  K. Burnecki,et al.  Pricing of Catastrophe Bonds , 2011 .

[46]  Jian Liu,et al.  Valuing Catastrophe Bonds Involving Credit Risks , 2014 .

[47]  Samuel H. Cox,et al.  Valuation of structured risk management products , 2004 .

[48]  M. Gendron,et al.  Hedging Flood Losses Using Cat Bonds , 2015 .

[49]  Jean-Philippe Bouchaud,et al.  Power laws in economics and finance: some ideas from physics , 2001 .