A remarkable two-dimensional membrane for multifunctional gas separation: halogenated metal-free fused-ring polyphthalocyanine.

We theoretically explore the structural and mechanical properties of metal-free fused-ring polyphthalocyanine (H2PPc) and halogenated H2PPc (F-H2PPc and Cl-H2PPc) membranes, and the energy profiles for gaseous H2, CO, CH4, CO2 and N2 molecules adsorbing on and passing through these monolayers. Importantly, we reconsider in depth the values of the parameters in the definition of permeance, and corroborate the validity of the model from first-principles theory with the results of H2 diffusion from classic molecular dynamics simulations. With well-defined nanosized pores, halogenated H2PPc monolayers turn out to be multifunctional gas separation membranes, i.e. F-H2PPc for H2/CO, H2/CH4, CO2/N2, CO2/CH4, CO/CH4 and N2/CH4 separation as well as Cl-H2PPc for H2/CO, H2/CH4 and H2/CO2 separation, which should be of great potential in energy and environmental fields.

[1]  Gang Xu,et al.  Ion sieving in graphene oxide membranes via cationic control of interlayer spacing , 2017, Nature.

[2]  V. Chen,et al.  Improving CO2 separation performance of thin film composite hollow fiber with Pebax®1657/ionic liquid gel membranes , 2017 .

[3]  F. Gallucci,et al.  Preparation and characterization of ceramic supported ultra-thin (~1 µm) Pd-Ag membranes , 2017 .

[4]  Wanqin Jin,et al.  Spray-evaporation assembled graphene oxide membranes for selective hydrogen transport , 2017 .

[5]  R. Hayn,et al.  Ligand Influence on Local Magnetic Moments in Fe-Based Metal–Organic Networks , 2017 .

[6]  M. Boroglu,et al.  Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation , 2017 .

[7]  S. Namuangruk,et al.  Mechanistic study of NO oxidation on Cr–phthalocyanine: theoretical insight , 2017 .

[8]  C. V. Singh,et al.  New insights into the structure-nonlinear mechanical property relations for graphene allotropes , 2016 .

[9]  Ruifeng Lu,et al.  Graphdiyne as a High-Efficiency Membrane for Separating Oxygen from Harmful Gases: A First-Principles Study. , 2016, ACS applied materials & interfaces.

[10]  Youyong Li,et al.  Heptazine-based graphitic carbon nitride as an effective hydrogen purification membrane , 2016 .

[11]  Chongli Zhong,et al.  Two-Dimensional Covalent Triazine Framework Membrane for Helium Separation and Hydrogen Purification. , 2016, ACS applied materials & interfaces.

[12]  R. Zhou,et al.  Toward high permeability, selectivity and controllability of water desalination with FePc nanopores. , 2016, Physical chemistry chemical physics : PCCP.

[13]  Qiang Sun,et al.  Giant magnetocrystalline anisotropy of 5d transition metal-based phthalocyanine sheet. , 2015, Physical chemistry chemical physics : PCCP.

[14]  S. Dai,et al.  Expanded Porphyrins as Two-Dimensional Porous Membranes for CO2 Separation. , 2015, ACS applied materials & interfaces.

[15]  Alírio E. Rodrigues,et al.  Methane purification by adsorptive processes on MIL-53(Al) , 2015 .

[16]  Marta I. Hernández,et al.  Graphdiyne Pores: “Ad Hoc” Openings for Helium Separation Applications , 2014 .

[17]  Yuan Peng,et al.  Metal-organic framework nanosheets as building blocks for molecular sieving membranes , 2014, Science.

[18]  Dewei Rao,et al.  A promising monolayer membrane for oxygen separation from harmful gases: nitrogen-substituted polyphenylene. , 2014, Nanoscale.

[19]  P. Poesio,et al.  Mechanisms of molecular permeation through nanoporous graphene membranes. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[20]  Xingfa Gao,et al.  Single layer of polymeric cobalt phthalocyanine: promising low-cost and high-activity nanocatalysts for CO oxidation. , 2013, Small.

[21]  Qiang Sun,et al.  Absorption induced modulation of magnetism in two-dimensional metal-phthalocyanine porous sheets. , 2013, The Journal of chemical physics.

[22]  H Germany,et al.  Synthesis and structure of high-quality films of copper polyphthalocyanine – 2D conductive polymer , 2013, 1303.3694.

[23]  Sean C. Smith,et al.  Modelling carbon membranes for gas and isotope separation. , 2013, Physical chemistry chemical physics : PCCP.

[24]  Steven W. Cranford,et al.  Extended graphynes: simple scaling laws for stiffness, strength and fracture. , 2012, Nanoscale.

[25]  Yingyan Zhang,et al.  Mechanical properties of graphynes under tension: A molecular dynamics study , 2012 .

[26]  S. Koenig,et al.  Selective molecular sieving through porous graphene. , 2012, Nature nanotechnology.

[27]  Zifeng Yan,et al.  Influence of chemical functionalization on the CO₂/N₂ separation performance of porous graphene membranes. , 2012, Nanoscale.

[28]  Qiang Sun,et al.  Pre-combustion CO2 capture by transition metal ions embedded in phthalocyanine sheets. , 2012, The Journal of chemical physics.

[29]  James J Winebrake,et al.  Greater focus needed on methane leakage from natural gas infrastructure , 2012, Proceedings of the National Academy of Sciences.

[30]  Victor Rudolph,et al.  Graphdiyne: a versatile nanomaterial for electronics and hydrogen purification. , 2011, Chemical communications.

[31]  Qiang Sun,et al.  Sc-phthalocyanine sheet: Promising material for hydrogen storage , 2011 .

[32]  Qiang Sun,et al.  Magnetism of phthalocyanine-based organometallic single porous sheet. , 2011, Journal of the American Chemical Society.

[33]  Mathieu Abel,et al.  Single layer of polymeric Fe-phthalocyanine: an organometallic sheet on metal and thin insulating film. , 2011, Journal of the American Chemical Society.

[34]  Aijun Du,et al.  Electronic Functionality in Graphene-Based Nanoarchitectures: Discovery and Design via First-Principles Modeling. , 2011, The journal of physical chemistry letters.

[35]  Klaus Müllen,et al.  Porous graphene as an atmospheric nanofilter. , 2010, Small.

[36]  Joshua Schrier,et al.  Helium Separation Using Porous Graphene Membranes , 2010 .

[37]  Daoben Zhu,et al.  Architecture of graphdiyne nanoscale films. , 2010, Chemical communications.

[38]  Zhen Zhou,et al.  Two-dimensional polyphenylene: experimentally available porous graphene as a hydrogen purification membrane. , 2010, Chemical communications.

[39]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[40]  R. Kaner,et al.  Honeycomb carbon: a review of graphene. , 2010, Chemical reviews.

[41]  J. Kysar,et al.  Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description , 2009 .

[42]  P. Ruffieux,et al.  Porous graphenes: two-dimensional polymer synthesis with atomic precision. , 2009, Chemical communications.

[43]  S. Dai,et al.  Porous graphene as the ultimate membrane for gas separation. , 2009, Nano letters.

[44]  F. M. Peeters,et al.  Graphene: A perfect nanoballoon , 2008, 0810.4056.

[45]  S. Sircar,et al.  Removal and recovery of compressed CO2 from flue gas by a novel thermal swing chemisorption process , 2008 .

[46]  M. Drndić,et al.  Electron beam nanosculpting of suspended graphene sheets , 2008, 0808.2974.

[47]  A. M. van der Zande,et al.  Impermeable atomic membranes from graphene sheets. , 2008, Nano letters.

[48]  G. Henkelman,et al.  Optimization methods for finding minimum energy paths. , 2008, The Journal of chemical physics.

[49]  Richard W. Baker,et al.  Natural Gas Processing with Membranes: An Overview , 2008 .

[50]  T. Nenoff,et al.  Membranes for hydrogen separation. , 2007, Chemical reviews.

[51]  J. Canadell,et al.  Global and regional drivers of accelerating CO2 emissions , 2007, Proceedings of the National Academy of Sciences.

[52]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[53]  Zhaoqi Zhu Permeance should be used to characterize the productivity of a polymeric gas separation membrane , 2006 .

[54]  R. Saraf,et al.  Theory of hydrogen permeability in nonporous silica membranes , 2004 .

[55]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[56]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[57]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[58]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[59]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[60]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[61]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[62]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[63]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[64]  D. Wöhrle,et al.  Polymer phthalocyanines and their precursors 2. The structure of polyphthalocyanines , 1980 .

[65]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[66]  K. Thompson,et al.  A helium-3 dilution refrigerator , 1966 .

[67]  W. Drinkard,et al.  Copper Phthalocyanine Polymers1 , 1959 .

[68]  Steven W. Cranford,et al.  Title of Paper , 1985 .

[69]  R. P. Linstead,et al.  212. Phthalocyanines. Part I. A new type of synthetic colouring matters , 1934 .

[70]  A. Lowe,et al.  213. Phthalocyanines. Part II. The preparation of phthalocyanine and some metallic derivatives from o-cyanobenzamide and phthalimide , 1934 .