Von Mises-Fisher approximation of multiple scattering process on the hypersphere
暂无分享,去创建一个
[1] Ludovic Margerin,et al. Nonparametric estimation of the heterogeneity of a random medium using compound Poisson process modeling of wave multiple scattering. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[2] Akira Ishimaru,et al. Wave propagation and scattering in random media , 1997 .
[3] Christian Lageman,et al. Decompounding on Compact Lie Groups , 2010, IEEE Transactions on Information Theory.
[4] Inderjit S. Dhillon,et al. Clustering on the Unit Hypersphere using von Mises-Fisher Distributions , 2005, J. Mach. Learn. Res..
[5] F. Perrin,et al. Étude mathématique du mouvement brownien de rotation , 1928 .
[6] Philipp Hennig,et al. Using an Infinite Von Mises-Fisher Mixture Model to Cluster Treatment Beam Directions in External Radiation Therapy , 2010, 2010 Ninth International Conference on Machine Learning and Applications.
[7] D. Owen. Handbook of Mathematical Functions with Formulas , 1965 .
[8] S. R. Jammalamadaka,et al. Directional Statistics, I , 2011 .
[9] Sumitra Purkayastha,et al. Simple proofs of two results on convolutions of unimodal distributions , 1998 .
[10] John T. Kent,et al. Limiting behaviour of the von Mises-Fisher distribution , 1978, Mathematical Proceedings of the Cambridge Philosophical Society.
[11] Carl-Fredrik Westin,et al. Hyperspherical von Mises-Fisher Mixture (HvMF) Modelling of High Angular Resolution Diffusion MRI , 2007, MICCAI.
[12] Thomas S. Huang,et al. Generative model-based speaker clustering via mixture of von Mises-Fisher distributions , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.
[13] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[14] Paul H. Roberts,et al. Random walk on a sphere and on a Riemannian manifold , 1960, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.