Von Mises-Fisher approximation of multiple scattering process on the hypersphere

This paper presents a “method of moments” estimation technique for the study of multiple scattering on the hypersphere. The proposed model is similar to a compound Poisson process evolving on a special manifold: the unit hypersphere. The presented work makes use of an approximation result for multiply convolved von Mises-Fisher distributions on hyperspheres. Comparison with other approximations show the accuracy of the proposed model to provide estimators for the mean free path and concentration parameters when studying a multiple scattering process. Such a process is classically used to model the propagation of waves or particles in random media.

[1]  Ludovic Margerin,et al.  Nonparametric estimation of the heterogeneity of a random medium using compound Poisson process modeling of wave multiple scattering. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[3]  Christian Lageman,et al.  Decompounding on Compact Lie Groups , 2010, IEEE Transactions on Information Theory.

[4]  Inderjit S. Dhillon,et al.  Clustering on the Unit Hypersphere using von Mises-Fisher Distributions , 2005, J. Mach. Learn. Res..

[5]  F. Perrin,et al.  Étude mathématique du mouvement brownien de rotation , 1928 .

[6]  Philipp Hennig,et al.  Using an Infinite Von Mises-Fisher Mixture Model to Cluster Treatment Beam Directions in External Radiation Therapy , 2010, 2010 Ninth International Conference on Machine Learning and Applications.

[7]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[8]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[9]  Sumitra Purkayastha,et al.  Simple proofs of two results on convolutions of unimodal distributions , 1998 .

[10]  John T. Kent,et al.  Limiting behaviour of the von Mises-Fisher distribution , 1978, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  Carl-Fredrik Westin,et al.  Hyperspherical von Mises-Fisher Mixture (HvMF) Modelling of High Angular Resolution Diffusion MRI , 2007, MICCAI.

[12]  Thomas S. Huang,et al.  Generative model-based speaker clustering via mixture of von Mises-Fisher distributions , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[13]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[14]  Paul H. Roberts,et al.  Random walk on a sphere and on a Riemannian manifold , 1960, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.