Orbitally driven giant phonon anharmonicity in SnSe

[1]  P. F. Peterson,et al.  Mantid - Data Analysis and Visualization Package for Neutron Scattering and $μ SR$ Experiments , 2014, 1407.5860.

[2]  G. J. Snyder,et al.  Thermoelectric properties of p-type polycrystalline SnSe doped with Ag , 2014 .

[3]  Stefano Curtarolo,et al.  Low thermal conductivity and triaxial phononic anisotropy of SnSe , 2014, 1406.3532.

[4]  Wu Li,et al.  ShengBTE: A solver of the Boltzmann transport equation for phonons , 2014, Comput. Phys. Commun..

[5]  J. Vaney,et al.  Assessment of the thermoelectric performance of polycrystalline p-type SnSe , 2014 .

[6]  K. Esfarjani,et al.  Resonant bonding leads to low lattice thermal conductivity , 2014, Nature Communications.

[7]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[8]  O. Delaire,et al.  Phonon self-energy and origin of anomalous neutron scattering spectra in SnTe and PbTe thermoelectrics. , 2013, Physical review letters.

[9]  K. Refson,et al.  Suppression of thermal conductivity by rattling modes in thermoelectric sodium cobaltate. , 2013, Nature materials.

[10]  V. Ozoliņš,et al.  Lone pair electrons minimize lattice thermal conductivity , 2013 .

[11]  O. Delaire,et al.  Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2. , 2013, Nature nanotechnology.

[12]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[13]  G. Ehlers,et al.  The new cold neutron chopper spectrometer at the Spallation Neutron Source: design and performance. , 2011, The Review of scientific instruments.

[14]  David J. Singh,et al.  Giant anharmonic phonon scattering in PbTe. , 2011, Nature materials.

[15]  P. Palffy-Muhoray Liquid crystals: Printed actuators in a flap. , 2009, Nature materials.

[16]  G. Kotliar,et al.  Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals , 2009, Nature.

[17]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[18]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[19]  Hannu Mutka,et al.  Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. , 2008, Nature materials.

[20]  Kim Lefmann,et al.  Avoided crossing of rattler modes in thermoelectric materials. , 2008, Nature materials.

[21]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[22]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[23]  Paul Zschack,et al.  Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals , 2007, Science.

[24]  Sandia Report,et al.  DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis Version 4.0 User's Manual , 2006 .

[25]  Astronomy,et al.  Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory , 2005, cond-mat/0501548.

[26]  Nicola A. Spaldin,et al.  First-principles indicators of metallicity and cation off-centricity in the IV-VI rocksalt chalcogenides of divalent Ge, Sn, and Pb , 2003 .

[27]  E. J. Freeman,et al.  Localized vibrational modes in metallic solids , 1998, Nature.

[28]  J. Jumas,et al.  Structure and temperature transformation of SnSe. Stabilization of a new cubic phase Sn4Bi2Se7 , 1998 .

[29]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[30]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[31]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[32]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[33]  W. Tremel,et al.  Tin Sulfide, (Te2)2I2, and Related Compounds: Symmetry‐Controlled Deformations in Solid‐State Materials , 1987 .

[34]  W. Tremel,et al.  Tin sulfide, tellurium iodide ((Te2)2I2), and related compounds: symmetry-controlled deformations in solid-state materials , 1987 .

[35]  J. Pannetier,et al.  Neutron diffraction study of the structural phase transition in SnS and SnSe , 1986 .

[36]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[37]  H. Wiedemeier,et al.  The high temperature structure of ß-SnS and ß-SnSe and the B16-to-B33 type λ-transition path , 1981 .

[38]  G. L. Squires,et al.  Introduction to the Theory of Thermal Neutron Scattering: Neutron optics , 1978 .

[39]  D. Turnbull,et al.  Solid State Physics : Advances in Research and Applications , 1978 .

[40]  H. R. Chandrasekhar,et al.  Infrared and Raman spectra of the IV-VI compounds SnS and SnSe , 1977 .

[41]  W. Cochran Crystal Stability and the Theory of Ferroelectricity , 1959 .

[42]  L. Orgel 769. The stereochemistry of B subgroup metals. Part II. The inert pair , 1959 .