Filtering AtMostNValue with difference constraints: Application to the shift minimisation personnel task scheduling problem

This paper introduces a propagator which filters a conjunction of difference constraints and an AtMostNValue constraint. This propagator is relevant in many applications such as the Shift Minimisation Personnel Task Scheduling Problem, which is used as a case study all along this paper. Extensive experiments show that it significantly improves a straightforward CP model, so that it competes with best known approaches from Operational Research.

[1]  Yuri Malitsky,et al.  ISAC - Instance-Specific Algorithm Configuration , 2010, ECAI.

[2]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[3]  Andreas T. Ernst,et al.  Algorithms for large scale Shift Minimisation Personnel Task Scheduling Problems , 2012, Eur. J. Oper. Res..

[4]  Xavier Lorca,et al.  Choco: an Open Source Java Constraint Programming Library , 2008 .

[5]  Pieter Smet,et al.  The shift minimisation personnel task scheduling problem: a new hybrid approach and computational insights , 2014 .

[6]  P. V. Beek,et al.  A fast and simple algorithm for bounds consistency of the all different constraint , 2003, IJCAI 2003.

[7]  Mats Carlsson,et al.  Global Constraint Catalogue: Past, Present and Future , 2007, Constraints.

[8]  Andreas T. Ernst,et al.  Staff scheduling and rostering: A review of applications, methods and models , 2004, Eur. J. Oper. Res..

[9]  Jaikumar Radhakrishnan,et al.  Greed is good: Approximating independent sets in sparse and bounded-degree graphs , 1997, Algorithmica.

[10]  François Pachet,et al.  Automatic Generation of Music Programs , 1999, CP.

[11]  Matteo Fischetti,et al.  The Fixed Job Schedule Problem with Spread-Time Constraints , 1987, Oper. Res..

[12]  Toby Walsh,et al.  Filtering Algorithms for the NValue Constraint , 2006, Constraints.

[13]  Martin Charles Golumbic Not So Perfect Graphs , 2004 .

[14]  Yuri Malitsky,et al.  Instance-specific algorithm configuration , 2014, Constraints.

[15]  Andreas T. Ernst,et al.  The Personnel Task Scheduling Problem , 2001 .

[16]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[17]  Pierre Flener,et al.  Towards Solver-Independent Propagators , 2012, CP.

[18]  Marc Salomon,et al.  Planning the Size and Organization of KLM's Aircraft Maintenance Personnel , 1994 .

[19]  Matteo Fischetti,et al.  Embedding {0, }-Cuts in a Branch-and-Cut Framework: A Computational Study , 2007, INFORMS J. Comput..

[20]  Toby Walsh,et al.  Propagating Conjunctions of AllDifferent Constraints , 2010, AAAI.

[21]  Paola Festa,et al.  A Bus Driver Scheduling Problem: a new mathematical model and a GRASP approximate solution , 2011, J. Heuristics.

[22]  Lakhdar Sais,et al.  Reasoning from last conflict(s) in constraint programming , 2009, Artif. Intell..

[23]  Xavier Lorca,et al.  A Constraint on the Number of Distinct Vectors with Application to Localization , 2009, CP.

[24]  Erik Demeulemeester,et al.  Personnel scheduling: A literature review , 2013, Eur. J. Oper. Res..

[25]  Peter J. Stuckey,et al.  Efficient constraint propagation engines , 2006, TOPL.

[26]  Federico Malucelli,et al.  Exact Solution of Graph Coloring Problems via Constraint Programming and Column Generation , 2012, INFORMS J. Comput..

[27]  Mohan Krishnamoorthy,et al.  Staff rostering at a large international airport , 1997, Ann. Oper. Res..

[28]  Peter J. Stuckey,et al.  Erratum to: Efficient constraint propagation engines , 2009, TOPL.

[29]  Michael W. Carter,et al.  When Is the Classroom Assignment Problem Hard? , 1992, Oper. Res..

[30]  Odile Bellenguez-Morineau,et al.  A constraint-based approach for the shift design personnel task scheduling problem with equity , 2013, Comput. Oper. Res..

[31]  Jean-Charles Régin,et al.  A Filtering Algorithm for Constraints of Difference in CSPs , 1994, AAAI.

[32]  Leo G. Kroon,et al.  Exact and Approximation Algorithms for the Tactical Fixed Interval Scheduling Problem , 1997, Oper. Res..

[33]  Nicolas Beldiceanu Pruning for the Minimum Constraint Family and for the Number of Distinct Values Constraint Family , 2001, CP.

[34]  Robert M. Haralick,et al.  Increasing Tree Search Efficiency for Constraint Satisfaction Problems , 1979, Artif. Intell..