Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy.

In vitro assays that reconstitute the dynamic behavior of microtubules provide insight into the roles of microtubule-associated proteins (MAPs) in regulating the growth, shrinkage, and catastrophe of microtubules. The use of total internal reflection fluorescence microscopy with fluorescently labeled tubulin and MAPs has allowed us to study microtubule dynamics at the resolution of single molecules. In this chapter we present a practical overview of how these assays are performed in our laboratory: fluorescent labeling methods, strategies to prolong the time to photo-bleaching, preparation of stabilized microtubules, flow-cells, microtubule immobilization, and finally an overview of the workflow that we follow when performing the experiments. At all stages, we focus on practical tips and highlight potential stumbling blocks.

[1]  Kiwamu Saito,et al.  Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution , 1995, Nature.

[2]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.

[3]  D. Axelrod Chapter 7: Total internal reflection fluorescence microscopy. , 2008, Methods in cell biology.

[4]  Colin Echeverría Aitken,et al.  Improved Dye Stability in Single-Molecule Fluorescence Experiments , 2009 .

[5]  Anna Akhmanova,et al.  Tracking the ends: a dynamic protein network controls the fate of microtubule tips , 2008, Nature Reviews Molecular Cell Biology.

[6]  S. McKinney,et al.  Nonblinking and long-lasting single-molecule fluorescence imaging , 2006, Nature Methods.

[7]  Roger Y. Tsien,et al.  Creating new fluorescent probes for cell biology , 2003, Nature Reviews Molecular Cell Biology.

[8]  R. Vale,et al.  Kinesin Walks Hand-Over-Hand , 2004, Science.

[9]  A. Hyman,et al.  Preparation of modified tubulins. , 1991, Methods in enzymology.

[10]  M. Caplow,et al.  The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice [published erratum appears in J Cell Biol 1995 Apr;129(2):549] , 1994, The Journal of cell biology.

[11]  N. Thompson,et al.  Total internal reflection fluorescence. , 1984, Annual review of biophysics and bioengineering.

[12]  Stefan Diez,et al.  Biotemplated nanopatterning of planar surfaces with molecular motors. , 2006, Nano letters.

[13]  R. Vale,et al.  How kinesin waits between steps , 2007, Nature.

[14]  Gary J. Brouhard,et al.  XMAP215 Is a Processive Microtubule Polymerase , 2008, Cell.

[15]  Clive R. Bagshaw,et al.  A comparison of optical geometries for combined flash photolysis and total internal reflection fluorescence microscopy , 2000, Journal of microscopy.

[16]  D. Brockwell,et al.  Handbook of Single Molecule Fluorescence Spectroscopy , 2006 .

[17]  Liedewij Laan,et al.  Reconstitution of a microtubule plus-end tracking system in vitro , 2007, Nature.

[18]  Jonathon Howard,et al.  Kinesin-8 Motors Act Cooperatively to Mediate Length-Dependent Microtubule Depolymerization , 2009, Cell.

[19]  B. Mickey,et al.  Rigidity of microtubules is increased by stabilizing agents , 1995, The Journal of cell biology.

[20]  N. Thompson,et al.  Total Internal Reflection-Fluorescence Correlation Spectroscopy , 2006 .

[21]  Libchaber,et al.  Phase diagram of microtubules. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  Zhaolin Li,et al.  Mechanism and dynamics of breakage of fluorescent microtubules. , 2006, Biophysical journal.

[23]  G. Borisy,et al.  Ionic and nucleotide requirements for microtubule polymerization in vitro. , 1975, Biochemistry.

[24]  Paul R. Selvin,et al.  Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization , 2003, Science.

[25]  R C Weisenberg,et al.  Microtubule Formation in vitro in Solutions Containing Low Calcium Concentrations , 1972, Science.

[26]  R. Tsien,et al.  On/off blinking and switching behaviour of single molecules of green fluorescent protein , 1997, Nature.

[27]  S. Diez,et al.  The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. , 2003, Molecular cell.

[28]  A. Hyman,et al.  Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. , 1992, Molecular biology of the cell.

[29]  Anthony A. Hyman,et al.  Growth, fluctuation and switching at microtubule plus ends , 2009, Nature Reviews Molecular Cell Biology.

[30]  M. Caplow,et al.  Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules. , 1996, Molecular biology of the cell.

[31]  R. Stewart,et al.  Motility of dimeric ncd on a metal-chelating surfactant: evidence that ncd is not processive. , 1999, Biochemistry.

[32]  K. S. Iyer,et al.  Direct spectrophotometric measurement of the rate of reduction of disulfide bonds. The reactivity of the disulfide bonds of bovine -lactalbumin. , 1973, The Journal of biological chemistry.

[33]  Anthony A. Hyman,et al.  Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner , 2006, Nature Cell Biology.

[34]  S. Diez,et al.  TIRF microscopy evanescent field calibration using tilted fluorescent microtubules , 2009, Journal of microscopy.

[35]  Kai Johnsson,et al.  An engineered protein tag for multiprotein labeling in living cells. , 2008, Chemistry & biology.

[36]  W. Brinkley Microtubules: a brief historical perspective. , 1997, Journal of structural biology.

[37]  Paul R. Selvin,et al.  Single-molecule techniques : a laboratory manual , 2008 .

[38]  Colin Echeverría Aitken,et al.  An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. , 2008, Biophysical journal.

[39]  Jonathon Howard,et al.  Detection of fractional steps in cargo movement by the collective operation of kinesin-1 motors , 2007, Proceedings of the National Academy of Sciences.

[40]  Jonathon Howard,et al.  The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends , 2006, Nature.