Atmospheric effects on the classification of surface minerals in an arid region using Short-Wave Infrared (SWIR) hyperspectral imagery and a spectral unmixing technique
暂无分享,去创建一个
K. Staenz | N. O'Neill | A. Royer | R. Neville | C. Nadeau
[1] B. Gao,et al. Radiative transfer codes applied to hyperspectral data for the retrieval of surface reflectance , 2002 .
[2] R. Caloz,et al. Précis de télédétection , 2002 .
[3] William H. Press,et al. Numerical recipes in C , 2002 .
[4] Paul Budkewitsch,et al. Vicarious calibration of airborne hyperspectral sensors in operational environments , 2001 .
[5] Mark A. Folkman,et al. EO-1/Hyperion hyperspectral imager design, development, characterization, and calibration , 2001, SPIE Asia-Pacific Remote Sensing.
[6] C. Nadeau. Analyse des effets atmosphériques dans les données en télédétection du moyen infrarouge sur la classification des minéraux de surface en milieu aride , 2000 .
[7] Robert A. Neville,et al. Hyperspectral imagery for mineral exploration: comparison of data from two airborne sensors , 1998, Optics & Photonics.
[8] D. C. Robertson,et al. MODTRAN cloud and multiple scattering upgrades with application to AVIRIS , 1998 .
[9] Jessica A. Faust,et al. Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .
[10] K. Staenz,et al. ISDAS – A System for Processing/Analyzing Hyperspectral Data , 1998 .
[11] K. Staenz,et al. Retrieval of surface reflectance from hyperspectral Data using a look-up table approach , 1997 .
[12] Robert A. Neville,et al. Mineral reflectances extracted from SFSI imagery in Nevada , 1997, Defense, Security, and Sensing.
[13] Didier Tanré,et al. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..
[14] Robert A. Neville,et al. SFSI: Canada's First Airborne SWIR Imaging Spectrometer , 1995 .
[15] Joseph W. Boardman,et al. Analysis, understanding, and visualization of hyperspectral data as convex sets in n space , 1995, Defense, Security, and Sensing.
[16] Gail P. Anderson,et al. MODTRAN3: An update and recent validations against airborne high resolution interferometer measurements , 1995 .
[17] Alexander F. H. Goetz,et al. Terrestrial imaging spectrometry - Current status, future trends , 1993 .
[18] Yosio Edemir Shimabukuro,et al. The least-squares mixing models to generate fraction images derived from remote sensing multispectral data , 1991, IEEE Trans. Geosci. Remote. Sens..
[19] P. Deschamps,et al. Description of a computer code to simulate the satellite signal in the solar spectrum : the 5S code , 1990 .
[20] J. Boardman,et al. Mineral mapping at Cuprite, Nevada with a 63-channel imaging spectrometer , 1990 .
[21] Identification - The Goal Beyond Discrimination , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.
[22] A. Berk. MODTRAN : A moderate resolution model for LOWTRAN7 , 1989 .
[23] Paul E. Johnson,et al. Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 Site , 1986 .
[24] H. Charles Romesburg,et al. Cluster analysis for researchers , 1984 .
[25] Alexander F. H. Goetz,et al. Remote sensing for exploration; an overview , 1983 .
[26] G. Hunt. Near-infrared (1.3-2.4 mu m) spectra of alteration minerals; potential for use in remote sensing , 1979 .
[27] Anne B. Kahle,et al. Mapping of hydrothermal alteration in the Cuprite mining district, Nevada, using aircraft scanner images for the spectral region 0.46 to 2.36µm , 1977 .