Biplanar Graphs:: A Survey

Abstract A graph is called biplanar if it is the union of two planar graphs. In this survey, we present a variety of results on biplanar graphs, some special families of such graphs, and some generalizations.

[1]  Anthony Mansfield,et al.  Determining the thickness of graphs is NP-hard , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  W. T. Tutte,et al.  The thickness of a graph , 1963 .

[3]  J. Hutchinson,et al.  Coloring Ordinary Maps, Maps of Empires, and Maps of the Moon , 1993 .

[4]  Roberto Tamassia,et al.  A unified approach to visibility representations of planar graphs , 1986, Discret. Comput. Geom..

[5]  W. T. Tutte The Non-Biplanar Character of the Complete 9-Graph , 1963, Canadian Mathematical Bulletin.

[6]  L. Beineke,et al.  The Thickness of the Complete Graph , 1965, Canadian Journal of Mathematics.

[7]  Ian Anderson,et al.  Current graphs and bi-embeddings , 1978, J. Graph Theory.

[8]  Joan P. Hutchinson,et al.  Rectangle-Visibility Representations of Bipartite Graphs , 1994, Graph Drawing.

[9]  Bradley W. Jackson,et al.  Infinite families of bi-embeddings , 1990, Discret. Math..

[10]  John H. Halton,et al.  On the thickness of graphs of given degree , 1991, Inf. Sci..

[11]  Ian Anderson,et al.  Infinite families of biembedding numbers , 1979, J. Graph Theory.

[12]  Stephen K. Wismath,et al.  Characterizing bar line-of-sight graphs , 1985, SCG '85.

[13]  I. Anderson,et al.  Bi-embeddings of graphs , 1974, Glasgow Mathematical Journal.

[14]  J. Moon,et al.  On the thickness of the complete bipartite graph , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  L. W. Beineke Minimal decompositions of complete graphs into subgraphs with embeddability properties , 1969 .

[16]  G. Ringel,et al.  Die toroidale Dicke des vollständigen Graphen , 1965 .

[17]  N. Bose,et al.  Thickness of graphs with degree constrained vertices , 1977 .

[18]  F. Harary,et al.  Every planar graph with nine points has a nonplanar complement , 1962 .

[19]  John Michael Vasak The Thickness of The Complete Graph , 1976 .

[20]  Thomas C. Shermer,et al.  On representations of some thickness-two graphs , 1999, Comput. Geom..