Comparison of uncertainty analysis of the Montecarlo and Latin Hypercube algorithms in a camera calibration model

In this study, we performed a comparison between two statistical methods to examine the uncertainties of intrinsic and extrinsic parameters in the conventional digital camera calibration process. The first methods, Monte Carlo, involves the generation of samples for one variable by a simple random sampling method and the second method, Latin Hypercube, generates random samples that occur within equal probability intervals with normal distribution for each range. The behavior of both methods is analyzed taking into account the number of iterations, confidence level and time of the calculation of the uncertainty. Our results show the advantages of the Latin Hypercube method over the Monte Carlo method, taking into account the number of executions of the model, maintaining a 95 percent confidence level and reducing the execution time considerably.

[1]  Connie M. Borror,et al.  Response Surface Methodology: A Retrospective and Literature Survey , 2004 .

[2]  James E. Campbell,et al.  An Approach to Sensitivity Analysis of Computer Models: Part I—Introduction, Input Variable Selection and Preliminary Variable Assessment , 1981 .

[3]  Emanuele Trucco,et al.  Introductory techniques for 3-D computer vision , 1998 .

[4]  D. Cacuci,et al.  A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems—II: Statistical Methods , 2004 .

[5]  J. Hurtado-Ramos,et al.  Análisis de la sensibilidad en un modelo de calibración cámara-LiDAR , 2016 .

[6]  H. Rabitz,et al.  High Dimensional Model Representations , 2001 .

[7]  Michael Andrew Christie,et al.  Error analysis and simulations of complex phenomena , 2005 .

[8]  Suárez Ruíz,et al.  Métodos Monte Carlo y Productos Estructurados , 2012 .

[9]  Dirk P. Kroese,et al.  Why the Monte Carlo method is so important today , 2014 .

[10]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  D. Cacuci,et al.  A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems—I: Deterministic Methods , 2004 .

[12]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[13]  Andrés E. Torres-Abello Metodología para la Estimación de Incertidumbres Asociadas a Concentraciones de Sólidos Suspendidos Totales Mediante Métodos de Generación Aleatoria , 2011 .

[14]  J. C. Helton,et al.  Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty , 1997 .

[15]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[16]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[17]  Joaquín Salas,et al.  Cálculo de la Incertidumbre en la Medición Visual de los Parámetros de un Péndulo de Foucault , 2008, Computación y Sistemas.

[18]  Dan G. Cacuci,et al.  Sensitivity & Uncertainty Analysis, Volume 1: Theory , 2003 .

[19]  Fadi Dornaika,et al.  An Algebraic Approach to Camera Self-Calibration , 2001, Comput. Vis. Image Underst..