A Sharp Discrepancy Bound for Jittered Sampling

For $m, d \in {\mathbb N}$, a jittered sampling point set $P$ having $N = m^d$ points in $[0,1)^d$ is constructed by partitioning the unit cube $[0,1)^d$ into $m^d$ axis-aligned cubes of equal size and then placing one point independently and uniformly at random in each cube. We show that there are constants $c \ge 0$ and $C$ such that for all $d$ and all $m \ge d$ the expected non-normalized star discrepancy of a jittered sampling point set satisfies \[c \,dm^{\frac{d-1}{2}} \sqrt{1 + \log(\tfrac md)} \le {\mathbb E} D^*(P) \le C\, dm^{\frac{d-1}{2}} \sqrt{1 + \log(\tfrac md)}.\] This discrepancy is thus smaller by a factor of $\Theta\big(\sqrt{\frac{1+\log(m/d)}{m/d}}\,\big)$ than the one of a uniformly distributed random point set of $m^d$ points. This result improves both the upper and the lower bound for the discrepancy of jittered sampling given by Pausinger and Steinerberger (Journal of Complexity (2016)). It also removes the asymptotic requirement that $m$ is sufficiently large compared to $d$.

[1]  Michael Gnewuch,et al.  Probabilistic Lower Bounds for the Discrepancy of Latin Hypercube Samples , 2018 .

[2]  Anand Srivastav,et al.  Bounds and constructions for the star-discrepancy via ?-covers , 2005, J. Complex..

[3]  Michael Gnewuch,et al.  Discrepancy Bounds for a Class of Negatively Dependent Random Points Including Latin Hypercube Samples , 2021, The Annals of Applied Probability.

[4]  David R. Bellhouse,et al.  Area Estimation by Point-Counting Techniques: , 1981 .

[5]  Bernard Chazelle,et al.  The Discrepancy Method , 1998, ISAAC.

[6]  Vikas Sindhwani,et al.  Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels , 2014, J. Mach. Learn. Res..

[7]  Arnold J. Stromberg,et al.  Number-theoretic Methods in Statistics , 1996 .

[8]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[9]  Michael Gnewuch,et al.  Entropy, Randomization, Derandomization, and Discrepancy , 2012 .

[10]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[11]  H. Robbins A Remark on Stirling’s Formula , 1955 .

[12]  Florian Pausinger,et al.  On the Discrepancy of Jittered Sampling on the Discrepancy of Jittered Sampling , 2022 .

[13]  William W. L. Chen On irregularities of distribution. , 1980 .

[14]  F. G. Foster,et al.  An Introduction to Probability Theory and its Applications, Volume I (2Nd Edition) , 1958 .

[15]  Dmitriy Bilyk,et al.  The Supremum Norm of the Discrepancy Function: Recent Results and Connections , 2012, 1207.6659.

[16]  Michael Gnewuch Bracketing numbers for axis-parallel boxes and applications to geometric discrepancy , 2008, J. Complex..

[17]  Benjamin Doerr,et al.  A lower bound for the discrepancy of a random point set , 2012, J. Complex..

[18]  Christoph Aistleitner,et al.  Covering numbers, dyadic chaining and discrepancy , 2011, J. Complex..

[19]  P. Gruber,et al.  Funktionen von beschränkter Variation in der Theorie der Gleichverteilung , 1990 .

[20]  Markus Hofer,et al.  Probabilistic discrepancy bound for Monte Carlo point sets , 2014, Math. Comput..

[21]  E. Hlawka Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .

[22]  E. Novak,et al.  The inverse of the star-discrepancy depends linearly on the dimension , 2001 .

[23]  Art B Owen,et al.  A quasi-Monte Carlo Metropolis algorithm. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Shuhei Kimura,et al.  Genetic algorithms using low-discrepancy sequences , 2005, GECCO '05.

[25]  Robert L. Cook,et al.  Distributed ray tracing , 1984, SIGGRAPH.

[26]  David Lindley,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 2010 .

[27]  Olivier Teytaud,et al.  DCMA: yet another derandomization in covariance-matrix-adaptation , 2007, GECCO '07.

[28]  Art B. Owen,et al.  Quasi-Monte Carlo Sampling by , 2003, SIGGRAPH 2003.

[29]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[30]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[31]  Michael Gnewuch,et al.  3. On negatively dependent sampling schemes, variance reduction, and probabilistic upper discrepancy bounds , 2019, 1904.10796.

[32]  Robert F. Tichy,et al.  Sequences, Discrepancies and Applications , 1997 .