Macrophage and neutrophil heterogeneity at single-cell spatial resolution in human inflammatory bowel disease

[1]  A. Salas,et al.  Generation of human colon organoids from healthy and inflammatory bowel disease mucosa , 2022, PloS one.

[2]  Zachary R. Lewis,et al.  High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. , 2022, Nature biotechnology.

[3]  D. Lazarević,et al.  Cellular and transcriptional dynamics of human neutrophils at steady state and upon stress , 2022, Nature Immunology.

[4]  G. Boeckxstaens,et al.  Macrophages in the gut: Masters in multitasking. , 2022, Immunity.

[5]  E. Lundberg,et al.  The emerging landscape of spatial profiling technologies , 2022, Nature Reviews Genetics.

[6]  L. Solis,et al.  Challenges and Opportunities for Immunoprofiling Using a Spatial High-Plex Technology: The NanoString GeoMx® Digital Spatial Profiler , 2022, Frontiers in Oncology.

[7]  S. Dell’Orso,et al.  Single-Cell Analysis Reveals the Range of Transcriptional States of Circulating Human Neutrophils , 2022, The Journal of Immunology.

[8]  M. Silverberg,et al.  Time to revisit disease classification in IBD: is the current classification of IBD good enough for optimal clinical management? , 2021, Gastroenterology.

[9]  Á. Corbí,et al.  The Gene Signature of Activated M-CSF-Primed Human Monocyte-Derived Macrophages Is IL-10-Dependent , 2021, Journal of Innate Immunity.

[10]  S. Teichmann,et al.  Differential abundance testing on single-cell data using k-nearest neighbor graphs , 2021, Nature Biotechnology.

[11]  Mark D. Robinson,et al.  Doublet identification in single-cell sequencing data using scDblFinder , 2021, F1000Research.

[12]  A. Yamaguchi,et al.  Nrg1/ErbB Signaling-Mediated Regulation of Fibrosis After Myocardial Infarction , 2021, bioRxiv.

[13]  Amit A. Patel,et al.  Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. , 2021, Immunity.

[14]  S. Turley,et al.  Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer. , 2021, Immunity.

[15]  A. Bateman,et al.  Human Intestinal Macrophages Are Involved in the Pathology of Both Ulcerative Colitis and Crohn Disease , 2021, Inflammatory bowel diseases.

[16]  Tomohiro Mizutani,et al.  Notch and TNF-α signaling promote cytoplasmic accumulation of OLFM4 in intestinal epithelium cells and exhibit a cell protective role in the inflamed mucosa of IBD patients , 2021, Biochemistry and biophysics reports.

[17]  I. Glass,et al.  Mapping Development of the Human Intestinal Niche at Single-Cell Resolution. , 2020, Cell stem cell.

[18]  Á. Corbí,et al.  MAFB and MAF Transcription Factors as Macrophage Checkpoints for COVID-19 Severity , 2020, Frontiers in Immunology.

[19]  A. Dopazo,et al.  Co-option of Neutrophil Fates by Tissue Environments , 2020, Cell.

[20]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[21]  I. Ordás,et al.  Dissecting Common and Unique Effects of Anti-α4β7 and Anti-Tumor Necrosis Factor Treatment in Ulcerative Colitis , 2020, Journal of Crohn's & colitis.

[22]  G. Zheng,et al.  Single-cell transcriptomic landscape of human blood cells , 2020, National science review.

[23]  R. Bowden,et al.  Single-cell atlas of colonic CD8+ T cells in ulcerative colitis , 2020, Nature Medicine.

[24]  W. H. Chan,et al.  Mesenchymal Niche-Derived Neuregulin-1 Drives Intestinal Stem Cell Proliferation and Regeneration of Damaged Epithelium. , 2020, Cell stem cell.

[25]  Á. Corbí,et al.  Serotonin (5-HT) Shapes the Macrophage Gene Profile through the 5-HT2B–Dependent Activation of the Aryl Hydrocarbon Receptor , 2020, The Journal of Immunology.

[26]  S. Eisenstein,et al.  Inflammatory Bowel Disease Presentation and Diagnosis. , 2019, The Surgical clinics of North America.

[27]  Aviv Regev,et al.  Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis , 2019, Cell.

[28]  Oliver Stegle,et al.  Benchmarking Single-Cell RNA Sequencing Protocols for Cell Atlas Projects , 2019, bioRxiv.

[29]  G. Rätsch,et al.  HBEGF+ macrophages in rheumatoid arthritis induce fibroblast invasiveness , 2019, Science Translational Medicine.

[30]  S. Renshaw,et al.  The CXCL12/CXCR4 Signaling Axis Retains Neutrophils at Inflammatory Sites in Zebrafish , 2019, Front. Immunol..

[31]  N. Ashley,et al.  Colonic epithelial cell diversity in health and inflammatory bowel disease , 2019, Nature.

[32]  Judy H. Cho,et al.  Single-Cell Analysis of Crohn’s Disease Lesions Identifies a Pathogenic Cellular Module Associated with Resistance to Anti-TNF Therapy , 2019, Cell.

[33]  A. Butte,et al.  Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage , 2018, Nature Immunology.

[34]  Fan Zhang,et al.  Fast, sensitive, and accurate integration of single cell data with Harmony , 2018, bioRxiv.

[35]  Quin F. Wills,et al.  Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease , 2018, Cell.

[36]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[37]  Wei Zhang,et al.  Single-cell transcriptomic landscape of nucleated cells in umbilical cord blood , 2018, bioRxiv.

[38]  Ping Wang,et al.  Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression , 2018, The Journal of experimental medicine.

[39]  Laleh Haghverdi,et al.  Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors , 2018, Nature Biotechnology.

[40]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[41]  H. Stunnenberg,et al.  Transcriptional and functional profiling defines human small intestinal macrophage subsets , 2018, The Journal of experimental medicine.

[42]  Á. Corbí,et al.  Serotonin drives the acquisition of a profibrotic and anti-inflammatory gene profile through the 5-HT7R-PKA signaling axis , 2017, Scientific Reports.

[43]  Davis J. McCarthy,et al.  A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor , 2016, F1000Research.

[44]  Aaron T. L. Lun,et al.  Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R , 2017, Bioinform..

[45]  Á. Corbí,et al.  CD163L1 and CLEC5A discriminate subsets of human resident and inflammatory macrophages in vivo , 2015, Journal of leukocyte biology.

[46]  Li Wang,et al.  Dimensionality Reduction Via Graph Structure Learning , 2015, KDD.

[47]  Cole Trapnell,et al.  Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions , 2014, Nature Biotechnology.

[48]  Cole Trapnell,et al.  The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells , 2014, Nature Biotechnology.

[49]  S. Gordon,et al.  The M1 and M2 paradigm of macrophage activation: time for reassessment , 2014, F1000prime reports.

[50]  Á. Corbí,et al.  Serotonin Skews Human Macrophage Polarization through HTR2B and HTR7 , 2013, The Journal of Immunology.

[51]  G. Ott,et al.  Olfactomedin-4 is a glycoprotein secreted into mucus in active IBD. , 2012, Journal of Crohn's & Colitis.

[52]  A. Puig-Kröger,et al.  Dendritic Cell-Specific ICAM-3–Grabbing Nonintegrin Expression on M2-Polarized and Tumor-Associated Macrophages Is Macrophage-CSF Dependent and Enhanced by Tumor-Derived IL-6 and IL-10 , 2011, The Journal of Immunology.

[53]  T. Kuijpers,et al.  Infiltrated Neutrophils Acquire Novel Chemokine Receptor Expression and Chemokine Responsiveness in Chronic Inflammatory Lung Diseases , 2008, The Journal of Immunology.

[54]  H. Freeman Granuloma-positive Crohn's disease. , 2007, Canadian journal of gastroenterology = Journal canadien de gastroenterologie.

[55]  J. Orenstein,et al.  Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. , 2005, The Journal of clinical investigation.

[56]  Silvano Sozzani,et al.  The chemokine system in diverse forms of macrophage activation and polarization. , 2004, Trends in immunology.

[57]  Matthijs Kramer,et al.  Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[58]  G. Fischbach,et al.  Neuregulin and ErbB receptor signaling pathways in the nervous system , 2001, Current Opinion in Neurobiology.

[59]  Kristi Kincaid,et al.  M-1/M-2 Macrophages and the Th1/Th2 Paradigm1 , 2000, The Journal of Immunology.

[60]  D A Lauffenburger,et al.  Epidermal growth factor alters fibroblast migration speed and directional persistence reciprocally and in a matrix-dependent manner. , 1998, Journal of cell science.

[61]  A. Paulen A time for reassessment. , 1986, Cancer nursing.

[62]  J. Saiz,et al.  Right‐sided non‐recurrent laryngeal nerve without any vascular anomaly: an anatomical trap , 2021, ANZ journal of surgery.