Two FETI-based heterogeneous time step coupling methods for Newmark and α-schemes derived from the energy method
暂无分享,去创建一个
Alain Combescure | Anthony Gravouil | Ali Limam | M. Brun | A. Combescure | A. Gravouil | A. Limam | M. Brun
[1] Martin S. Williams,et al. Evaluation of numerical time‐integration schemes for real‐time hybrid testing , 2008 .
[2] Oreste S. Bursi,et al. Novel generalized-α methods for interfield parallel integration of heterogeneous structural dynamic systems , 2010, J. Comput. Appl. Math..
[3] William J.T. Daniel,et al. A partial velocity approach to subcycling structural dynamics , 2003 .
[4] Steen Krenk,et al. Energy conservation in Newmark based time integration algorithms , 2006 .
[5] Pierre Pegon,et al. α-Operator splitting time integration technique for pseudodynamic testing error propagation analysis , 1997 .
[6] Hachmi Ben Dhia,et al. Further Insights by Theoretical Investigations of the Multiscale Arlequin Method , 2008 .
[7] W. Daniel. A study of the stability of subcycling algorithms in structural dynamics , 1998 .
[8] Ted Belytschko,et al. Mixed-time implicit-explicit finite elements for transient analysis , 1982 .
[9] A. Combescure,et al. Coupling subdomains with heterogeneous time integrators and incompatible time steps , 2009 .
[10] Oreste S. Bursi,et al. The analysis of the Generalized-α method for non-linear dynamic problems , 2002 .
[11] William J.T. Daniel,et al. Subcycling first- and second-order generalizations of the trapezoidal rule , 1998 .
[12] Julien Réthoré,et al. Energy conservation of atomistic/continuum coupling , 2009 .
[13] Kumar K. Tamma,et al. Algorithms by design: A new normalized time‐weighted residual methodology and design of a family of energy–momentum conserving algorithms for non‐linear structural dynamics , 2009 .
[14] T. Belytschko,et al. Stability of an explicit multi-time step integration algorithm for linear structural dynamics equations , 1996 .
[15] Thomas J. R. Hughes,et al. Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .
[16] Steen Krenk,et al. Properties of time integration with first order filter damping , 2005 .
[17] G. Magonette,et al. Pseudo‐dynamic testing of bridges using non‐linear substructuring , 2004 .
[18] Alain Combescure,et al. A monolithic energy conserving method to couple heterogeneous time integrators with incompatible time steps in structural dynamics , 2011 .
[19] Ted Belytschko,et al. Stability analysis of elemental explicit-implicit partitions by Fourier methods , 1992 .
[20] Steen Krenk,et al. Extended state‐space time integration with high‐frequency energy dissipation , 2008 .
[21] Thomas J. R. Hughes,et al. Implicit-Explicit Finite Elements in Transient Analysis: Stability Theory , 1978 .
[22] Thomas J. R. Hughes,et al. IMPLICIT-EXPLICIT FINITE ELEMENTS IN TRANSIENT ANALYSIS , 1978 .
[23] P. Smolinski. Stability analysis of a multi-time step explicit integration method , 1992 .
[24] Folco Casadei,et al. Binary spatial partitioning of the central‐difference time integration scheme for explicit fast transient dynamics , 2009 .
[25] Y. S. Wu,et al. A multi-time step integration algorithm for structural dynamics based on the modified trapezoidal rule , 2000 .
[26] Thomas J. R. Hughes,et al. IMPLICIT-EXPLICIT FINITE ELEMENTS IN TRANSIENT ANALYSIS: IMPLEMENTATION AND NUMERICAL EXAMPLES. , 1978 .
[27] C. Farhat,et al. A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .
[28] O. C. Zienkiewicz,et al. An alpha modification of Newmark's method , 1980 .
[29] Patrick Smolinski,et al. An explicit multi-time step integration method for second order equations , 1992 .
[30] H. Dhia. Problèmes mécaniques multi-échelles: la méthode Arlequin , 1998 .
[31] A. Prakash,et al. A FETI‐based multi‐time‐step coupling method for Newmark schemes in structural dynamics , 2004 .
[32] J. C. Simo,et al. The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .
[33] Daniel Rixen,et al. Théorie des vibrations : application à la dynamique des structures , 1993 .
[34] Oreste S. Bursi,et al. Convergence analysis of a parallel interfield method for heterogeneous simulations with dynamic substructuring , 2008 .
[35] T. Belytschko,et al. Stability of explicit‐implicit mesh partitions in time integration , 1978 .
[36] M. Arnold,et al. Convergence of the generalized-α scheme for constrained mechanical systems , 2007 .
[37] Alain Combescure,et al. A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis , 2002 .
[38] L. Remondini,et al. A new concept in two‐dimensional auto‐adaptative mesh generation , 1994 .
[39] Thomas J. R. Hughes,et al. Implicit-explicit finite elements in nonlinear transient analysis , 1979 .
[40] L. Lenti,et al. A simple multi‐directional absorbing layer method to simulate elastic wave propagation in unbounded domains , 2010, 1009.1002.
[41] Charbel Farhat,et al. A transient FETI methodology for large‐scale parallel implicit computations in structural mechanics , 1994 .
[42] Marek Klisinski,et al. On stability of multitime step integration procedures , 1998 .
[43] Alain Combescure,et al. Implicit/explicit multi-time step co-computations for predicting reinforced concrete structure response under earthquake loading , 2012 .
[44] W. Daniel. Analysis and implementation of a new constant acceleration subcycling algorithm , 1997 .
[45] Alain Combescure,et al. Multi-time-step explicit–implicit method for non-linear structural dynamics , 2001 .
[46] Jintai Chung,et al. A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .
[47] Ted Belytschko,et al. Mixed methods for time integration , 1979 .
[48] T. Belytschko,et al. Explicit multi-time step integration for first and second order finite element semidiscretizations , 1993 .
[49] Anthony Gravouil,et al. Explicit/implicit multi-time step co-computations for blast analyses on a reinforced concrete frame structure , 2012 .