Two FETI-based heterogeneous time step coupling methods for Newmark and α-schemes derived from the energy method

Abstract The purpose of this paper is to describe a general methodology to obtain multi-time step coupling methods for different time-integration schemes (Newmark, HHT- α , WBZ- α , CH- α ) on the basis of energetic considerations. The general framework of the FETI method is considered for building the heterogeneous time step coupling methods by ensuring the gluing of subdomains with Lagrange multipliers. The proposed methods for coupling subdomains with different time integration schemes and time steps (fine and large time steps), are based on the pseudo-energy measure as introduced by Hughes in the so-called energy method employed for proving the stability of implicit–explicit algorithms. Assuming a given variation of the Lagrange multipliers over the large time step, kinematic conditions are derived by ensuring the zero pseudo-energy at the interface. Two methods will be derived in this paper. The first new method, for which the interface problem involving the Lagrange multipliers is solved at the large time scale, can handle the popular dissipative α -schemes (HHT- α , WBZ- α , CH- α ); in the particular case of the Newmark schemes, the new method matches with the PH method proposed by Prakash and Hjelmstad. The second new method is based at the micro time scale. It can be viewed as an extension of the method proposed by Gravouil and Combescure (GC method) for the coupling of the α -schemes. Nonetheless, like the GC method, the new micro-time-based method turns out to be dissipative when non-dissipative second-order accurate schemes are involved, and looses one order of accuracy.

[1]  Martin S. Williams,et al.  Evaluation of numerical time‐integration schemes for real‐time hybrid testing , 2008 .

[2]  Oreste S. Bursi,et al.  Novel generalized-α methods for interfield parallel integration of heterogeneous structural dynamic systems , 2010, J. Comput. Appl. Math..

[3]  William J.T. Daniel,et al.  A partial velocity approach to subcycling structural dynamics , 2003 .

[4]  Steen Krenk,et al.  Energy conservation in Newmark based time integration algorithms , 2006 .

[5]  Pierre Pegon,et al.  α-Operator splitting time integration technique for pseudodynamic testing error propagation analysis , 1997 .

[6]  Hachmi Ben Dhia,et al.  Further Insights by Theoretical Investigations of the Multiscale Arlequin Method , 2008 .

[7]  W. Daniel A study of the stability of subcycling algorithms in structural dynamics , 1998 .

[8]  Ted Belytschko,et al.  Mixed-time implicit-explicit finite elements for transient analysis , 1982 .

[9]  A. Combescure,et al.  Coupling subdomains with heterogeneous time integrators and incompatible time steps , 2009 .

[10]  Oreste S. Bursi,et al.  The analysis of the Generalized-α method for non-linear dynamic problems , 2002 .

[11]  William J.T. Daniel,et al.  Subcycling first- and second-order generalizations of the trapezoidal rule , 1998 .

[12]  Julien Réthoré,et al.  Energy conservation of atomistic/continuum coupling , 2009 .

[13]  Kumar K. Tamma,et al.  Algorithms by design: A new normalized time‐weighted residual methodology and design of a family of energy–momentum conserving algorithms for non‐linear structural dynamics , 2009 .

[14]  T. Belytschko,et al.  Stability of an explicit multi-time step integration algorithm for linear structural dynamics equations , 1996 .

[15]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[16]  Steen Krenk,et al.  Properties of time integration with first order filter damping , 2005 .

[17]  G. Magonette,et al.  Pseudo‐dynamic testing of bridges using non‐linear substructuring , 2004 .

[18]  Alain Combescure,et al.  A monolithic energy conserving method to couple heterogeneous time integrators with incompatible time steps in structural dynamics , 2011 .

[19]  Ted Belytschko,et al.  Stability analysis of elemental explicit-implicit partitions by Fourier methods , 1992 .

[20]  Steen Krenk,et al.  Extended state‐space time integration with high‐frequency energy dissipation , 2008 .

[21]  Thomas J. R. Hughes,et al.  Implicit-Explicit Finite Elements in Transient Analysis: Stability Theory , 1978 .

[22]  Thomas J. R. Hughes,et al.  IMPLICIT-EXPLICIT FINITE ELEMENTS IN TRANSIENT ANALYSIS , 1978 .

[23]  P. Smolinski Stability analysis of a multi-time step explicit integration method , 1992 .

[24]  Folco Casadei,et al.  Binary spatial partitioning of the central‐difference time integration scheme for explicit fast transient dynamics , 2009 .

[25]  Y. S. Wu,et al.  A multi-time step integration algorithm for structural dynamics based on the modified trapezoidal rule , 2000 .

[26]  Thomas J. R. Hughes,et al.  IMPLICIT-EXPLICIT FINITE ELEMENTS IN TRANSIENT ANALYSIS: IMPLEMENTATION AND NUMERICAL EXAMPLES. , 1978 .

[27]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[28]  O. C. Zienkiewicz,et al.  An alpha modification of Newmark's method , 1980 .

[29]  Patrick Smolinski,et al.  An explicit multi-time step integration method for second order equations , 1992 .

[30]  H. Dhia Problèmes mécaniques multi-échelles: la méthode Arlequin , 1998 .

[31]  A. Prakash,et al.  A FETI‐based multi‐time‐step coupling method for Newmark schemes in structural dynamics , 2004 .

[32]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .

[33]  Daniel Rixen,et al.  Théorie des vibrations : application à la dynamique des structures , 1993 .

[34]  Oreste S. Bursi,et al.  Convergence analysis of a parallel interfield method for heterogeneous simulations with dynamic substructuring , 2008 .

[35]  T. Belytschko,et al.  Stability of explicit‐implicit mesh partitions in time integration , 1978 .

[36]  M. Arnold,et al.  Convergence of the generalized-α scheme for constrained mechanical systems , 2007 .

[37]  Alain Combescure,et al.  A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis , 2002 .

[38]  L. Remondini,et al.  A new concept in two‐dimensional auto‐adaptative mesh generation , 1994 .

[39]  Thomas J. R. Hughes,et al.  Implicit-explicit finite elements in nonlinear transient analysis , 1979 .

[40]  L. Lenti,et al.  A simple multi‐directional absorbing layer method to simulate elastic wave propagation in unbounded domains , 2010, 1009.1002.

[41]  Charbel Farhat,et al.  A transient FETI methodology for large‐scale parallel implicit computations in structural mechanics , 1994 .

[42]  Marek Klisinski,et al.  On stability of multitime step integration procedures , 1998 .

[43]  Alain Combescure,et al.  Implicit/explicit multi-time step co-computations for predicting reinforced concrete structure response under earthquake loading , 2012 .

[44]  W. Daniel Analysis and implementation of a new constant acceleration subcycling algorithm , 1997 .

[45]  Alain Combescure,et al.  Multi-time-step explicit–implicit method for non-linear structural dynamics , 2001 .

[46]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[47]  Ted Belytschko,et al.  Mixed methods for time integration , 1979 .

[48]  T. Belytschko,et al.  Explicit multi-time step integration for first and second order finite element semidiscretizations , 1993 .

[49]  Anthony Gravouil,et al.  Explicit/implicit multi-time step co-computations for blast analyses on a reinforced concrete frame structure , 2012 .