A reduction algorithm for matrices depending on a parameter

In this articlc, \ve study square matrices pcrturbcd by a pararncter E. An efficient algorithm conlputing the z-espansiou of the eigcnvalucs in forinal Laurent-Puiseux series is provided, for \vhicli the computation of the characteristic polynomial is not rccluired. 15;e show 110~ to reduce the init,ial mat.ris so t.hat. the Lidskii-Edelman-Yla perturbat,iou theory [16] can be applied. We also explain why this approach lnily simplify t,he pcrturbcd cigenvcctor problem. The implement,ation of the algorithm in the comput.er algebra syst.em X~APIX has been used in a quantun~ mechani& cont.est to diagonalize sonle perturbed ruat.riccs and is available.

[1]  M. Vishik,et al.  THE SOLUTION OF SOME PERTURBATION PROBLEMS FOR MATRICES AND SELFADJOINT OR NON-SELFADJOINT DIFFERENTIAL EQUATIONS I , 1960 .

[2]  Alan Edelman,et al.  Nongeneric Eigenvalue Perturbations of Jordan Blocks , 1998 .

[3]  M. Overton,et al.  On the Lidskii-Vishik-Lyusternik Perturbation Theory for Eigenvalues of Matrices with Arbitrary Jordan Structure , 1997, SIAM J. Matrix Anal. Appl..

[4]  F. R. Gantmakher The Theory of Matrices , 1984 .

[5]  Claude-Pierre Jeannerod,et al.  An algorithmic approach for the symmetric perturbed Eigenvalue problem: Application to the solution of a Schrödinger equation by the kp-Perturbation method , 1998 .

[6]  W. Wasow Asymptotic expansions for ordinary differential equations , 1965 .

[7]  H. L. Turrittin Convergent solutions of ordinary linear homogeneous differential equations in the neighborhood of an irregular singular point , 1955 .

[8]  Pamela B. Lawhead,et al.  Super-irreducible form of linear differential systems , 1986 .

[9]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[10]  M. G. Bruin,et al.  A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .

[11]  Tosio Kato Perturbation theory for linear operators , 1966 .

[12]  Guoting Chen,et al.  An algorithm for computing the formal solutions of differential systems in the neighborhood of an irregular singular point , 1990, ISSAC '90.

[13]  W. Wolovich Linear multivariable systems , 1974 .

[14]  Ron Sommeling,et al.  Characteristic classes for irregular singularities , 1994, ISSAC '94.

[15]  K. Chu The solution of the matrix equations AXB−CXD=E AND (YA−DZ,YC−BZ)=(E,F) , 1987 .

[16]  J. Moser,et al.  The order of a singularity in Fuchs' theory , 1959 .

[17]  H. Baumgärtel Analytic perturbation theory for matrices and operators , 1985 .

[18]  C. Hoffmann Algebraic curves , 1988 .

[19]  A. H. M. Levelt,et al.  Jordan decomposition for a class of singular differential operators , 1975 .

[20]  Keith O. Geddes,et al.  Algorithms for computer algebra , 1992 .

[21]  Nicolas Maillard,et al.  Using computer algebra to diagonalize some Kane matrices , 2000 .

[22]  B. Beckermann,et al.  A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants , 1994, SIAM J. Matrix Anal. Appl..

[23]  V. Lidskii Perturbation theory of non-conjugate operators , 1966 .