A reduction algorithm for matrices depending on a parameter
暂无分享,去创建一个
[1] M. Vishik,et al. THE SOLUTION OF SOME PERTURBATION PROBLEMS FOR MATRICES AND SELFADJOINT OR NON-SELFADJOINT DIFFERENTIAL EQUATIONS I , 1960 .
[2] Alan Edelman,et al. Nongeneric Eigenvalue Perturbations of Jordan Blocks , 1998 .
[3] M. Overton,et al. On the Lidskii-Vishik-Lyusternik Perturbation Theory for Eigenvalues of Matrices with Arbitrary Jordan Structure , 1997, SIAM J. Matrix Anal. Appl..
[4] F. R. Gantmakher. The Theory of Matrices , 1984 .
[5] Claude-Pierre Jeannerod,et al. An algorithmic approach for the symmetric perturbed Eigenvalue problem: Application to the solution of a Schrödinger equation by the kp-Perturbation method , 1998 .
[6] W. Wasow. Asymptotic expansions for ordinary differential equations , 1965 .
[7] H. L. Turrittin. Convergent solutions of ordinary linear homogeneous differential equations in the neighborhood of an irregular singular point , 1955 .
[8] Pamela B. Lawhead,et al. Super-irreducible form of linear differential systems , 1986 .
[9] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[10] M. G. Bruin,et al. A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .
[11] Tosio Kato. Perturbation theory for linear operators , 1966 .
[12] Guoting Chen,et al. An algorithm for computing the formal solutions of differential systems in the neighborhood of an irregular singular point , 1990, ISSAC '90.
[13] W. Wolovich. Linear multivariable systems , 1974 .
[14] Ron Sommeling,et al. Characteristic classes for irregular singularities , 1994, ISSAC '94.
[15] K. Chu. The solution of the matrix equations AXB−CXD=E AND (YA−DZ,YC−BZ)=(E,F) , 1987 .
[16] J. Moser,et al. The order of a singularity in Fuchs' theory , 1959 .
[17] H. Baumgärtel. Analytic perturbation theory for matrices and operators , 1985 .
[18] C. Hoffmann. Algebraic curves , 1988 .
[19] A. H. M. Levelt,et al. Jordan decomposition for a class of singular differential operators , 1975 .
[20] Keith O. Geddes,et al. Algorithms for computer algebra , 1992 .
[21] Nicolas Maillard,et al. Using computer algebra to diagonalize some Kane matrices , 2000 .
[22] B. Beckermann,et al. A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants , 1994, SIAM J. Matrix Anal. Appl..
[23] V. Lidskii. Perturbation theory of non-conjugate operators , 1966 .