A Compact 0.1–14-GHz Ultra-Wideband Low-Noise Amplifier in 0.13-$\mu{\hbox{m}}$ CMOS

A compact ultra-wideband low-noise amplifier (LNA) with a 12.4-dB maximum gain, a 2.7-dB minimum noise figure (NF), and a bandwidth over 0.1-14 GHz is realized in a 0.13-μm CMOS technology. The circuit is basically an inductorless configuration using the resistive-feedback and current-reuse techniques for wideband and high-gain characteristics. It was found that a small inductor of only 0.4 nH can greatly improve the circuit performance, which enhances the bandwidth by 23%, and reduces the NF by 0.94 dB (at 10.6 GHz), while only consuming an additional area of 80 × 80 μm2. The LNA only occupies a core area of 0.031 mm , and consumes 14.4 mW from a 1.8-V supply.

[1]  B. Nauta,et al.  An inductorless wideband balun-LNA in 65nm CMOS with balanced output , 2007, ESSCIRC 2007 - 33rd European Solid-State Circuits Conference.

[2]  Da-Chiang Chang,et al.  A Compact Wideband CMOS Low-Noise Amplifier Using Shunt Resistive-Feedback and Series Inductive-Peaking Techniques , 2007, IEEE Microwave and Wireless Components Letters.

[3]  T. Lee,et al.  A 1.5 V, 1.5 GHz CMOS low noise amplifier , 1996 .

[4]  Heng Zhang,et al.  A Low-Power, Linearized, Ultra-Wideband LNA Design Technique , 2009, IEEE Journal of Solid-State Circuits.

[5]  Yue Ping Zhang,et al.  A 1.5-V 2–9.6-GHz Inductorless Low-Noise Amplifier in 0.13-$\mu{\hbox {m}} $ CMOS , 2007, IEEE Transactions on Microwave Theory and Techniques.

[6]  A. Bevilacqua,et al.  An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers , 2004, IEEE Journal of Solid-State Circuits.

[7]  Jun-De Jin,et al.  A 3.1–10.6 GHz Ultra-Wideband CMOS Low Noise Amplifier With Current-Reused Technique , 2007, IEEE Microwave and Wireless Components Letters.

[8]  B. Nauta,et al.  Wide-band CMOS low-noise amplifier exploiting thermal noise canceling , 2004, IEEE Journal of Solid-State Circuits.

[9]  S.S. Taylor,et al.  A 5GHz resistive-feedback CMOS LNA for low-cost multi-standard applications , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[10]  Yo-Sheng Lin,et al.  A 2.5-dB NF 3.1–10.6-GHz CMOS UWB LNA with small group-delay-variation , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[11]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[12]  J.R. Long,et al.  A 1.2 V Reactive-Feedback 3.1–10.6 GHz Low-Noise Amplifier in 0.13 $\mu{\hbox {m}}$ CMOS , 2007, IEEE Journal of Solid-State Circuits.

[13]  J. Laskar,et al.  Resistive-Feedback CMOS Low-Noise Amplifiers for Multiband Applications , 2008, IEEE Transactions on Microwave Theory and Techniques.

[14]  P. Wambacq,et al.  Low-Area Active-Feedback Low-Noise Amplifier Design in Scaled Digital CMOS , 2008, IEEE Journal of Solid-State Circuits.

[15]  Shen-Iuan Liu,et al.  A Broadband Noise-Canceling CMOS LNA for 3.1–10.6-GHz UWB Receivers , 2007, IEEE Journal of Solid-State Circuits.

[16]  Jinghong Chen,et al.  ESD-Protected Wideband CMOS LNAs Using Modified Resistive Feedback Techniques With Chip-on-Board Packaging , 2008, IEEE Transactions on Microwave Theory and Techniques.

[17]  Yu-Jiu Wang,et al.  A compact low-noise weighted distributed amplifier in CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[18]  Chunhua Wang,et al.  Design of 3.1-10.6GHz ultra-wideband CMOS low noise amplifier with current reuse technique , 2011 .