Closure properties of knapsack semilinear groups

We show that the following group constructions preserve the semilinearity of the solution sets for knapsack equations (equations of the form $g_1^{x_1} \cdots g_k^{x_k} = g$ in a group $G$, where the variables $x_1, \ldots, x_k$ take values in the natural numbers): graph products, amalgamated free products with finite amalgamated subgroups, HNN-extensions with finite associated subgroups, and finite extensions. Moreover, we study the dependence of the so-called magnitude for the solution set of a knapsack equation (the magnitude is a complexity measure for semi-linear sets) with respect to the length of the knapsack equation (measured in number of generators). We investigate, how this dependence changes under the above group operations.

[1]  Carl Droms A complex for right-angled Coxeter groups , 2002 .

[2]  S. Schleimer,et al.  Compressed Decision Problems in Hyperbolic Groups. , 2018 .

[3]  Giancarlo Mauri,et al.  Membership Problems for Regular and Context-Free Trace Languages , 1989, Inf. Comput..

[4]  R. B. J. T. Allenby,et al.  On locally extended residually finite groups , 1973 .

[5]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[6]  Jin-Yi Cai,et al.  Multiplicative equations over commuting matrices , 1996, SODA '96.

[7]  Warren Dicks,et al.  Groups Acting on Graphs , 1989 .

[8]  Volker Diekert,et al.  Word Equations over Graph Products , 2003, Int. J. Algebra Comput..

[9]  Volker Diekert,et al.  Combinatorics on Traces , 1990, Lecture Notes in Computer Science.

[10]  Markus Lohrey,et al.  Rational Subsets in HNN-Extensions and Amalgamated Products , 2008, Int. J. Algebra Comput..

[11]  Markus Lohrey,et al.  Logical Aspects of Cayley-graphs: the Monoid Case , 2006, Int. J. Algebra Comput..

[12]  Elisabeth Ruth Green,et al.  Graph products of groups , 1990 .

[13]  Markus Lohrey,et al.  Theories of HNN-Extensions and Amalgamated Products , 2006, ICALP.

[14]  A. Karrass,et al.  Subgroups of ${ m HNN}$ groups and groups with one defining relation , 1971 .

[15]  Markus Lohrey,et al.  Knapsack and subset sum problems in nilpotent, polycyclic, and co-context-free groups , 2015, AMS-EMS-SPM Joint Meeting.

[16]  Christoph Haase,et al.  On the complexity of model checking counter automata , 2012 .

[17]  Markus Lohrey,et al.  Knapsack in graph groups, HNN-extensions and amalgamated products , 2016, STACS.

[18]  Christoph Haase,et al.  The Taming of the Semi-Linear Set , 2016, ICALP.

[19]  A. Karrass,et al.  The subgroups of a free product of two groups with an amalgamated subgroup , 1970 .

[20]  Andrey Nikolaev,et al.  Knapsack problems in products of groups , 2014, J. Symb. Comput..

[21]  Markus Lohrey,et al.  Knapsack in Graph Groups , 2017, Theory of Computing Systems.

[22]  Friedrich Eisenbrand,et al.  Carathéodory bounds for integer cones , 2006, Oper. Res. Lett..

[23]  Friedrich Otto,et al.  String-Rewriting Systems , 1993, Text and Monographs in Computer Science.

[25]  Andreas Jakoby,et al.  Algorithmic Meta Theorems for Circuit Classes of Constant and Logarithmic Depth , 2012, STACS.

[26]  Martin Kutrib,et al.  On the Descriptional Complexity of Operations on Semilinear Sets , 2017, AFL.

[27]  Anthony Widjaja To Unary finite automata vs. arithmetic progressions , 2008 .

[28]  M. Dehn Über unendliche diskontinuierliche Gruppen , 1911 .

[29]  J. Lehnert,et al.  The co‐word problem for the Higman‐Thompson group is context‐free , 2007 .

[30]  Alexei G. Myasnikov,et al.  Knapsack problems in groups , 2013, Math. Comput..

[31]  V. Metaftsis,et al.  Subgroup separability of graphs of abelian groups , 2003 .

[32]  G. Higman,et al.  Embedding Theorems for Groups , 1949 .

[33]  Ilya Kapovich,et al.  Foldings, Graphs of Groups and the Membership Problem , 2005, Int. J. Algebra Comput..

[34]  Pedro V. Silva,et al.  On the rational subset problem for groups , 2006, math/0602454.

[35]  Markus Lohrey,et al.  Compressed Word Problems in HNN-extensions and Amalgamated Products , 2010, Theory of Computing Systems.

[36]  Markus Lohrey,et al.  Knapsack Problems for Wreath Products , 2018, STACS.

[37]  Alexei Mishchenko,et al.  Knapsack problem for nilpotent groups , 2017, Groups Complex. Cryptol..