Nanoaggregates from oligothiophenes and oligophenylenes: a systematic growth survey

The growth of nanoscopic oligophenylene and oligothiophene aggregates on muscovite mica by vacuum deposition has been investigated. In the case of para-phenylenes a dipole assisted self assembly generation of needle-like aggregates is observed on mica. At optimum fiber growth temperature phenylene aggregates grow in most cases without a layer of upright oriented molecules. In contrast, vacuum deposition of oligothiophenes results simultaneously in fibers of laying molecules as well as islands of upright molecules. Since both phenylenes and thiophenes are strongly polarizable but differ in the lattice parameters of the resulting crystalline overlayers a direct comparison between the two classes of molecules allows us to study the role of epitaxy on the growth of nanoaggregates. Besides straight aggregates we also observe thiophene rings on water and methanol treated mica surfaces, which consist of radially oriented, laying molecules.

[1]  J. Krenn,et al.  Oriented Sexiphenyl Single Crystal Nanoneedles on TiO2 (110) , 2004 .

[2]  S. Bozhevolnyi,et al.  Two-photon mapping of local molecular orientations in hexaphenyl nanofibers , 2004 .

[3]  R. Zamboni,et al.  Growth of conjugated oligomer thin films studied by atomic-force microscopy. , 1995, Physical review. B, Condensed matter.

[4]  H. Rubahn,et al.  Nonlinear optics of hexaphenyl nanofibers , 2003 .

[5]  S. Nishimura,et al.  Molecular-Scale Structure of the Cation Modified Muscovite Mica Basal-Plane , 1994 .

[6]  F. Biscarini,et al.  Morphology Controlled Energy Transfer in Conjugated Molecular Thin Films , 2001 .

[7]  M. Ward,et al.  Epitaxy and Molecular Organization on Solid Substrates , 2001 .

[8]  C. Brabec,et al.  Highly Anisotropically Self-Assembled Structures of para-Sexiphenyl Grown by Hot-Wall Epitaxy , 2000 .

[9]  M. Salmeron,et al.  An XPS and Scanning Polarization Force Microscopy Study of the Exchange and Mobility of Surface Ions on Mica , 1998 .

[10]  J. Skofronick,et al.  Investigation of the morphology of the initial growth of the aromatic molecule p-quaterphenyl on NaCl (001) , 2001 .

[11]  W. Gelbart,et al.  Interplay between Hole Instability and Nanoparticle Array Formation in Ultrathin Liquid Films , 1998 .

[12]  S. Nishimura,et al.  Cationic modification of muscovite mica : an electrokinetic study , 1995 .

[13]  H. Rubahn,et al.  Optical waveguiding in individual nanometer-scale organic fibers , 2003 .

[14]  C. C. Chang,et al.  Electric dipoles on clean mica surfaces , 1969 .

[15]  E. W. Meijer,et al.  About Oligothiophene Self-Assembly: From Aggregation in Solution to Solid-State Nanostructures , 2004 .

[16]  Juergen Ihlemann,et al.  UV laser cutting of organic nanofibers , 2005, SPIE MOEMS-MEMS.

[17]  R. Tubino,et al.  Intrinsic excitonic luminescence in odd and even numbered oligothiophenes. , 2002, Physical review letters.

[18]  Frans J. P. Wijnen,et al.  Polarized Absorption and Emission of Ordered Self-Assembled Porphyrin Rings , 2004 .

[19]  N. S. Sariciftci,et al.  Morphology and growth kinetics of organic thin films deposited by hot wall epitaxy , 2004 .

[20]  M. Schiek,et al.  Nanofibers from functionalized para-phenylene molecules , 2005 .

[21]  R. Nolte,et al.  Aided self-assembly of porphyrin nanoaggregates into ring-shaped architectures. , 2004, Chemistry.

[22]  Ward,et al.  Epitaxial interactions between molecular overlayers and ordered substrates. , 1996, Physical review. B, Condensed matter.

[23]  K. Yoshino,et al.  Enhanced electroluminescence utilizing p-sexiphenyl for the blue light source , 2001 .

[24]  J. Hofkens,et al.  Ring formation in evaporating porphyrin derivative solutions , 1999 .

[25]  D. F. Ogletree,et al.  The structure of molecularly thin films of water on mica in humid environments , 1995 .

[26]  C. Teichert,et al.  Pattern formation in para-quaterphenyl film growth on gold substrates , 2004 .

[27]  B. Farmer,et al.  Crystal Structures, Phase Transitions and Energy Calculations of Poly(p-phenylene) Oligomers , 1993 .

[28]  H. Rubahn,et al.  Chain-length dependent para-phenylene film- and needle-growth on dielectrics , 2004 .

[29]  H. Rubahn,et al.  Dipole-assisted self-assembly of light-emitting p-nP needles on mica , 2001 .

[30]  H. Yanagi,et al.  Self-waveguided blue light emission in p-sexiphenyl crystals epitaxially grown by mask-shadowing vapor deposition , 1999 .

[31]  H. Nalwa Handbook of organic conductive molecules and polymers , 1997 .

[32]  Frank Balzer,et al.  Nanofibers for linear and nonlinear photonics , 2003, SPIE OPTO.

[33]  N. S. Sariciftci,et al.  Morphology and growth kinetics of organic thin films deposited by hot wall epitaxy on KCl substrates , 2005 .

[34]  N. S. Sariciftci,et al.  Oriented organic semiconductor thin films , 2003 .

[35]  H. Rubahn,et al.  Optically Active Organic Microrings , 2003 .

[36]  E. Radoslovich The structure of muscovite, KAl2(Si3Al)O10(OH)2 , 1960 .

[37]  A. Lauria,et al.  Morphology and roughness of high-vacuum sublimed oligomer thin films , 1996 .