The DESI One-Percent survey: exploring the Halo Occupation Distribution of Emission Line Galaxies with AbacusSummit simulations

The One-Percent survey of the Dark Energy Spectroscopic Instrument collected ~ 270k emission line galaxies (ELGs) at 0.8<z<1.6. The high completeness of the sample allowed the clustering to be measured down to scales never probed before, 0.04 Mpc/h in rp for the projected 2-point correlation function (2PCF) and 0.17 Mpc/h in galaxy pair separation s for the 2PCF monopole and quadrupole. The most striking feature of the measurements is a strong signal at the smallest scales, below 0.2 Mpc/h in rp and 1 Mpc/h in s. We analyze these data in the halo occupation distribution framework. We consider different distributions for central galaxies, a standard power law for satellites with no condition on the presence of a central galaxy and explore several extensions of these models. For all considered models, the mean halo mass of the sample is found to be log10<Mh>~ 11.9. We obtain a satellite mean occupation function which agrees with physically motivated ELG models only if we introduce central-satellite conformity, meaning that the satellite occupation is conditioned by the presence of central galaxies of the same type. To achieve in addition a good modeling of the clustering between 0.1 and 1 Mpc/h in rp, we allow for ELG positioning outside of the halo virial radius and find 0.5% of ELGs residing in the outskirts of halos. Furthermore, the satellite velocity dispersion inside halos is found to be ~ 30% larger than that of the halo dark matter particles. These are the main findings of our work. We investigate assembly bias as a function of halo concentration, local density or local density anisotropies and observe no significant change in our results. We split the data sample in two redshift bins and report no significant evolution with redshift. Lastly, changing the cosmology in the modeling impacts only slightly our results.

[1]  W. Percival,et al.  The DESI One-Percent survey: constructing galaxy-halo connections for ELGs and LRGs using auto and cross correlations , 2023, 2306.06317.

[2]  W. Percival,et al.  The DESI One-Percent Survey: Modelling the clustering and halo occupation of all four DESI tracers with Uchuu , 2023, 2306.06315.

[3]  W. Percival,et al.  The DESI One-Percent Survey: Exploring A Generalized SHAM for Multiple Tracers with the UNIT Simulation , 2023, 2306.06313.

[4]  Sergey E. Koposov,et al.  The Early Data Release of the Dark Energy Spectroscopic Instrument , 2023, 2306.06308.

[5]  Sergey E. Koposov,et al.  Validation of the Scientific Program for the Dark Energy Spectroscopic Instrument , 2023, The Astronomical Journal.

[6]  E. Burtin,et al.  Halo occupation distribution of Emission Line Galaxies: fitting method with Gaussian processes , 2023, Journal of Cosmology and Astroparticle Physics.

[7]  Ana Maria Delgado,et al.  The MillenniumTNG Project: Refining the one-halo model of red and blue galaxies at different redshifts , 2022, 2210.10068.

[8]  Ana Maria Delgado,et al.  The MillenniumTNG Project: An improved two-halo model for the galaxy-halo connection of red and blue galaxies , 2022, 2210.10072.

[9]  M. Blanton,et al.  Abundance matching analysis of the emission line galaxy sample in the extended Baryon Oscillation Spectroscopic Survey , 2022, Monthly Notices of the Royal Astronomical Society.

[10]  Sergey E. Koposov,et al.  The Spectroscopic Data Processing Pipeline for the Dark Energy Spectroscopic Instrument , 2022, The Astronomical Journal.

[11]  A. Myers,et al.  Target Selection and Validation of DESI Emission Line Galaxies , 2022, The Astronomical Journal.

[12]  Sergey E. Koposov,et al.  The Target-selection Pipeline for the Dark Energy Spectroscopic Instrument , 2022, The Astronomical Journal.

[13]  Sergey E. Koposov,et al.  Overview of the Instrumentation for the Dark Energy Spectroscopic Instrument , 2022, The Astronomical Journal.

[14]  W. Percival,et al.  The Robotic Multiobject Focal Plane System of the Dark Energy Spectroscopic Instrument (DESI) , 2022, The Astronomical Journal.

[15]  Y. Jing,et al.  Constructing the Emission-line Galaxy–Host Halo Connection through Auto and Cross Correlations , 2021, The Astrophysical Journal.

[16]  D. Eisenstein,et al.  AbacusHOD: A highly efficient extended multi-tracer HOD framework and its application to BOSS and eBOSS data , 2021, 2110.11412.

[17]  L. Garrison,et al.  \textsc{CompaSO}: A new halo finder for competitive assignment to spherical overdensities , 2021, 2110.11408.

[18]  W. Percival,et al.  Creating jackknife and bootstrap estimates of the covariance matrix for the two-point correlation function , 2021, Monthly Notices of the Royal Astronomical Society.

[19]  D. Eisenstein,et al.  AbacusSummit: A Massive Set of High-Accuracy, High-Resolution N-Body Simulations , 2021, Monthly Notices of the Royal Astronomical Society.

[20]  Yen-Ting Lin,et al.  Angular clustering and host halo properties of [O ii] emitters at z > 1 in the Subaru HSC survey , 2020, Publications of the Astronomical Society of Japan.

[21]  D. Eisenstein,et al.  The galaxy–halo connection of emission-line galaxies in IllustrisTNG , 2020, 2011.05331.

[22]  B. Altieri,et al.  The Uchuu simulations: Data Release 1 and dark matter halo concentrations , 2020, 2007.14720.

[23]  W. Percival,et al.  The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: N-body mock challenge for the eBOSS emission line galaxy sample , 2020, Monthly Notices of the Royal Astronomical Society.

[24]  D. Schneider,et al.  The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: exploring the halo occupation distribution model for emission line galaxies , 2020, 2007.09012.

[25]  J. Brinkmann,et al.  The completed SDSS-IV extended baryon oscillation spectroscopic survey: pairwise-inverse probability and angular correction for fibre collisions in clustering measurements , 2020, 2007.09005.

[26]  C. Baugh,et al.  Do model emission line galaxies live in filaments at z ∼ 1? , 2020, 2001.06560.

[27]  L. Garrison,et al.  corrfunc – a suite of blazing fast correlation functions on the CPU , 2019, Monthly Notices of the Royal Astronomical Society.

[28]  J. Comparat,et al.  [O ii] emitters in MultiDark-Galaxies and DEEP2 , 2019, 1908.05626.

[29]  V. Ruhlmann-Kleider,et al.  Integral constraints in spectroscopic surveys , 2019, Journal of Cosmology and Astroparticle Physics.

[30]  C. Giocoli,et al.  UNIT project: Universe N-body simulations for the Investigation of Theoretical models from galaxy surveys , 2018, Monthly Notices of the Royal Astronomical Society.

[31]  D. Schneider,et al.  Evolution of Star-forming Galaxies from z = 0.7 to 1.2 with eBOSS Emission-line Galaxies , 2018, The Astrophysical Journal.

[32]  C. Baugh,et al.  The evolution of assembly bias , 2018, Monthly Notices of the Royal Astronomical Society.

[33]  Y. Jing CosmicGrowth Simulations—Cosmological simulations for structure growth studies , 2018, Science China Physics, Mechanics & Astronomy.

[34]  J. Tinker,et al.  The Connection Between Galaxies and Their Dark Matter Halos , 2018, Annual Review of Astronomy and Astrophysics.

[35]  Durham,et al.  The host dark matter haloes of [O II] emitters at 0.5 < z < 1.5 , 2017, 1708.07628.

[36]  Á. Orsi,et al.  The impact of galaxy formation on satellite kinematics and redshift-space distortions , 2017, 1708.00956.

[37]  W. Percival,et al.  Unbiased clustering estimation in the presence of missing observations , 2017, 1703.02070.

[38]  W. Percival,et al.  Using angular pair upweighting to improve 3D clustering measurements , 2017, 1703.02071.

[39]  J. Comparat,et al.  Redshift-Space Clustering of SDSS Galaxies — Luminosity Dependence, Halo Occupation Distribution, and Velocity Bias , 2015, 1505.07861.

[40]  K. Dawson,et al.  Velocity bias from the small-scale clustering of SDSS-III BOSS galaxies , 2014, 1407.4811.

[41]  J. Rhodes,et al.  EVOLUTION OF THE STELLAR-TO-DARK MATTER RELATION: SEPARATING STAR-FORMING AND PASSIVE GALAXIES FROM z = 1 TO 0 , 2013, 1308.2974.

[42]  David Schlegel,et al.  The DESI Experiment, a whitepaper for Snowmass 2013 , 2013, 1308.0847.

[43]  J. Tinker,et al.  Galaxy evolution in groups and clusters: star formation rates, red sequence fractions and the persistent bimodality , 2011, 1107.5311.

[44]  S. White,et al.  Assembly bias in the clustering of dark matter haloes , 2006, astro-ph/0611921.

[45]  M. Blanton,et al.  What Aspects of Galaxy Environment Matter? , 2006, astro-ph/0608353.

[46]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[47]  H. Mo,et al.  Properties of galaxy groups in the Sloan Digital Sky Survey – I. The dependence of colour, star formation and morphology on halo mass , 2005, astro-ph/0509147.

[48]  R. Davé,et al.  Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies , 2004, astro-ph/0408564.

[49]  Potsdam,et al.  The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.

[50]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[51]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[52]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[53]  G. Lake,et al.  The Structure of Cold Dark Matter Halos , 1998 .