A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations

Standard multigrid algorithms have proven ineffective for the solution of discretizations of Helmholtz equations. In this work we modify the standard algorithm by adding GMRES iterations at coarse levels and as an outer iteration. We demonstrate the algorithm's effectiveness through theoretical analysis of a model problem and experimental results. In particular, we show that the combined use of GMRES as a smoother and outer iteration produces an algorithm whose performance depends relatively mildly on wave number and is robust for normalized wave numbers as large as 200. For fixed wave numbers, it displays grid-independent convergence rates and has costs proportional to the number of unknowns.

[1]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[2]  Randolph E. Bank,et al.  A Comparison of Two Multilevel Iterative Methods for Nonsymmetric and Indefinite Elliptic Finite Element Equations , 1981 .

[3]  A. Ramage A multigrid preconditioner for stabilised discretisations of advection-diffusion problems , 1999 .

[4]  T. Hughes,et al.  Finite element methods for the Helmholtz equation in an exterior domain: model problems , 1991 .

[5]  Harry Yserentant,et al.  Preconditioning indefinite discretization matrices , 1989 .

[6]  Eli Turkel,et al.  PRECONDITIONED CONJUGATE GRADIENT METHODS FOR THE HELMHOLTZ EQUATION , 1984 .

[7]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[8]  Jinchao Xu A new class of iterative methods for nonselfadjoint or indefinite problems , 1992 .

[9]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[10]  Yair Shapira,et al.  Multigrid Techniques for Highly Indefinite Equations , 1996 .

[11]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[12]  V. V. Shaidurov,et al.  Some estimates of the rate of convergence for the cascadic conjugate-gradient method , 1996 .

[13]  A. Brandt,et al.  WAVE-RAY MULTIGRID METHOD FOR STANDING WAVE EQUATIONS , 1997 .

[14]  D. Givoli Non-reflecting boundary conditions , 1991 .

[15]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[16]  Peter A. Forsyth,et al.  Comparison of Fast Iterative Methods for Symmetric Systems , 1983 .

[17]  R. Bank,et al.  Sharp Estimates for Multigrid Rates of Convergence with General Smoothing and Acceleration , 1985 .

[18]  J R HughesThomas,et al.  Finite element methods for the Helmholtz equation in an exterior domain , 1991 .

[19]  Dietrich Braess,et al.  On the combination of the multigrid method and conjugate gradients , 1986 .

[20]  Jinchao Xu,et al.  The analysis of multigrid algorithms for nonsymmetric and indefinite elliptic problems , 1988 .

[21]  A. Bayliss,et al.  An Iterative method for the Helmholtz equation , 1983 .

[22]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[23]  Achi Brandt,et al.  Multigrid method for nearly singular and slightly indefinite problems , 1986 .

[24]  Cornelis W. Oosterlee,et al.  An Evaluation of Parallel Multigrid as a Solver and a Preconditioner for Singularly Perturbed Problems , 1998, SIAM J. Sci. Comput..

[25]  P. Deuflhard,et al.  The cascadic multigrid method for elliptic problems , 1996 .

[26]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[27]  Harry Yserentant On the multi-level splitting of finite element spaces for indefinite elliptic boundary value problems , 1986 .

[28]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[29]  J. Keller,et al.  Exact non-reflecting boundary conditions , 1989 .

[30]  Patrick Joly,et al.  Second-order absorbing boundary conditions for the wave equation: a solution for the corner problem , 1990 .

[31]  Eli Turkel,et al.  THE NUMERICAL SOLUTION OF THE HELMHOLTZ EQUATION FOR WAVE PROPAGATION PROBLEMS IN UNDERWATER ACOUSTICS , 1985 .

[32]  I. Babuska,et al.  Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .