A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations
暂无分享,去创建一个
[1] A. Majda,et al. Absorbing boundary conditions for the numerical simulation of waves , 1977 .
[2] Randolph E. Bank,et al. A Comparison of Two Multilevel Iterative Methods for Nonsymmetric and Indefinite Elliptic Finite Element Equations , 1981 .
[3] A. Ramage. A multigrid preconditioner for stabilised discretisations of advection-diffusion problems , 1999 .
[4] T. Hughes,et al. Finite element methods for the Helmholtz equation in an exterior domain: model problems , 1991 .
[5] Harry Yserentant,et al. Preconditioning indefinite discretization matrices , 1989 .
[6] Eli Turkel,et al. PRECONDITIONED CONJUGATE GRADIENT METHODS FOR THE HELMHOLTZ EQUATION , 1984 .
[7] William L. Briggs,et al. A multigrid tutorial , 1987 .
[8] Jinchao Xu. A new class of iterative methods for nonselfadjoint or indefinite problems , 1992 .
[9] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[10] Yair Shapira,et al. Multigrid Techniques for Highly Indefinite Equations , 1996 .
[11] A. H. Schatz,et al. An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .
[12] V. V. Shaidurov,et al. Some estimates of the rate of convergence for the cascadic conjugate-gradient method , 1996 .
[13] A. Brandt,et al. WAVE-RAY MULTIGRID METHOD FOR STANDING WAVE EQUATIONS , 1997 .
[14] D. Givoli. Non-reflecting boundary conditions , 1991 .
[15] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[16] Peter A. Forsyth,et al. Comparison of Fast Iterative Methods for Symmetric Systems , 1983 .
[17] R. Bank,et al. Sharp Estimates for Multigrid Rates of Convergence with General Smoothing and Acceleration , 1985 .
[18] J R HughesThomas,et al. Finite element methods for the Helmholtz equation in an exterior domain , 1991 .
[19] Dietrich Braess,et al. On the combination of the multigrid method and conjugate gradients , 1986 .
[20] Jinchao Xu,et al. The analysis of multigrid algorithms for nonsymmetric and indefinite elliptic problems , 1988 .
[21] A. Bayliss,et al. An Iterative method for the Helmholtz equation , 1983 .
[22] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[23] Achi Brandt,et al. Multigrid method for nearly singular and slightly indefinite problems , 1986 .
[24] Cornelis W. Oosterlee,et al. An Evaluation of Parallel Multigrid as a Solver and a Preconditioner for Singularly Perturbed Problems , 1998, SIAM J. Sci. Comput..
[25] P. Deuflhard,et al. The cascadic multigrid method for elliptic problems , 1996 .
[26] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[27] Harry Yserentant. On the multi-level splitting of finite element spaces for indefinite elliptic boundary value problems , 1986 .
[28] Wolfgang Hackbusch,et al. Multi-grid methods and applications , 1985, Springer series in computational mathematics.
[29] J. Keller,et al. Exact non-reflecting boundary conditions , 1989 .
[30] Patrick Joly,et al. Second-order absorbing boundary conditions for the wave equation: a solution for the corner problem , 1990 .
[31] Eli Turkel,et al. THE NUMERICAL SOLUTION OF THE HELMHOLTZ EQUATION FOR WAVE PROPAGATION PROBLEMS IN UNDERWATER ACOUSTICS , 1985 .
[32] I. Babuska,et al. Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .