Robust stop-and-go control strategy: an algebraic approach for non-linear estimation and control

This paper describes a robust stop-and-go control strategy for vehicles. Since sensors used in a real automotive context are generally low cost, measurements are quite noisy. Furthermore, many vehicle/road interaction factors (road slope, rolling resistance, aerodynamic forces) are very poorly known. Hence, a robust strategy to noise and parameters is proposed within the same theoretical framework: algebraic non-linear estimation and control techniques. On the one hand, noisy signals will be processed to obtain accurate derivatives, and thereafter, variable estimates. On the other hand, a grey-box closed-loop control will be implemented to reject all kinds of disturbances caused by exogenous parameter uncertainties.

[1]  Taketoshi Kunimatsu,et al.  Modeling of driver following behavior based on minimum-jerk theory , 2005 .

[2]  Petros A. Ioannou,et al.  Automatic Vehicle-Following , 1992, 1992 American Control Conference.

[3]  Cédric Join,et al.  Numerical differentiation with annihilators in noisy environment , 2009, Numerical Algorithms.

[4]  Carlos Canudas-de-Wit,et al.  A Safe Longitudinal Control for Adaptive Cruise Control and Stop-and-Go Scenarios , 2007, IEEE Transactions on Control Systems Technology.

[5]  M. Fliess,et al.  An algebraic framework for linear identification , 2003 .

[6]  Cédric Join,et al.  Non-linear estimation is easy , 2007, Int. J. Model. Identif. Control..

[7]  Lydie Nouvelière,et al.  Experimental vehicle longitudinal control using a second order sliding mode technique , 2007 .

[8]  J.K. Hedrick,et al.  Longitudinal Vehicle Controller Design for IVHS Systems , 1991, 1991 American Control Conference.

[9]  Kyongsu Yi,et al.  Nonlinear brake control for vehicle CW/CA systems , 2001 .

[10]  M. Fliess,et al.  Nonlinear observability, identifiability, and persistent trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[11]  Petros A. Ioannou,et al.  A Comparision of Spacing and Headway Control Laws for Automatically Controlled Vehicles1 , 1994 .

[12]  G. Dimitrakopoulos,et al.  Intelligent Transportation Systems , 2010, IEEE Vehicular Technology Magazine.

[13]  Petros A. Ioannou,et al.  Modeling and control design for a computer-controlled brake system , 1997, IEEE Trans. Control. Syst. Technol..

[14]  Michel Fliess,et al.  Analyse non standard du bruit , 2006, ArXiv.

[15]  Azim Eskandarian,et al.  Research advances in intelligent collision avoidance and adaptive cruise control , 2003, IEEE Trans. Intell. Transp. Syst..

[16]  Petros A. Ioannou,et al.  Throttle and Brake Control Systems for Automatic Vehicle following , 1994, J. Intell. Transp. Syst..

[17]  Kyongsu Yi,et al.  A driver-adaptive stop-and-go Cruise control strategy , 2004, IEEE International Conference on Networking, Sensing and Control, 2004.

[18]  José Eugenio Naranjo,et al.  ACC+Stop&go maneuvers with throttle and brake fuzzy control , 2006, IEEE Transactions on Intelligent Transportation Systems.

[19]  H. Mounier,et al.  Estimation of longitudinal and lateral vehicle velocities: An algebraic approach , 2008, 2008 American Control Conference.

[20]  Rolf Isermann,et al.  NONLINEAR DISTANCE AND CRUISE CONTROL FOR PASSENGER CARS , 1995 .

[21]  J. K. Hedrick,et al.  Vehicle Speed and Spacing Control Via Coordinated Throttle and Brake Actuation , 1996 .

[22]  Brigitte d'Andréa-Novel,et al.  Model-free control of automotive engine and brake for Stop-and-Go scenarios , 2009, 2009 European Control Conference (ECC).

[23]  Hans B. Pacejka,et al.  THE MAGIC FORMULA TYRE MODEL , 1991 .

[24]  J. K. Hedrick,et al.  Vehicle longitudinal control using an adaptive observer for automated highway systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[25]  Rolf Johansson,et al.  Stop and go controller for adaptive cruise control , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[26]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[27]  Hebertt Sira-Ramírez,et al.  Closed-loop parametric identification for continuous-time linear systems via new algebraic techniques , 2007 .

[28]  K. Yosida Operational Calculus: A Theory of Hyperfunctions , 1984 .

[29]  Jim Winkelman,et al.  Adaptive automotive speed control , 1993, IEEE Trans. Autom. Control..

[30]  Mike McDonald,et al.  Car-following: a historical review , 1999 .

[31]  Carlos Canudas-de-Wit,et al.  Dynamic Friction Models for Road/Tire Longitudinal Interaction , 2003 .

[32]  H. Takeuchi,et al.  Practical Estimator for Self-Tuning Automotive Cruise Control , 1991, 1991 American Control Conference.