Fabrication of high strength Cu–NbC composite conductor by high pressure torsion

[1]  K. Tsuchiya,et al.  Work-Softening, High Pressure Phase Formation and Powder Consolidation by HPT , 2010 .

[2]  Yanchun Zhou,et al.  Highly conductive and strengthened copper matrix composite reinforced by Zr2Al3C4 particulates , 2009 .

[3]  Yun Chen,et al.  Effects of rare earth elements on annealing characteristics of Cu–6 wt.% Fe composites , 2009 .

[4]  Z. Horita,et al.  Fabrication and Characterization of Supersaturated Al-Mg Alloys by Severe Plastic Deformation and Their Mechanical Properties , 2009 .

[5]  T. Langdon,et al.  The significance of strain reversals during processing by high-pressure torsion , 2008 .

[6]  K. Edalati,et al.  Microstructure and mechanical properties of pure Cu processed by high-pressure torsion , 2008 .

[7]  M. Umemoto,et al.  Synthesis of copper–niobium carbide composite powder by in situ processing , 2008 .

[8]  Terence G. Langdon,et al.  Using high-pressure torsion for metal processing: Fundamentals and applications , 2008 .

[9]  Y. Tang,et al.  Study of rare earth elements on the physical and mechanical properties of a Cu–Fe–P–Cr alloy , 2008 .

[10]  B. S. Murty,et al.  Mechanical and electrical properties of Cu-Ta nanocomposites prepared by high-energy ball milling , 2007 .

[11]  M. Kerber,et al.  Microstructural investigation of the annealing behaviour of high-pressure torsion (HPT) deformed copper , 2007 .

[12]  Marta López,et al.  Precipitation strengthened high strength-conductivity copper alloys containing ZrC ceramics , 2007 .

[13]  T. Langdon,et al.  The evolution of homogeneity in processing by high-pressure torsion , 2007 .

[14]  L. Schultz,et al.  Effect of Zr additions on the microstructure, and the mechanical and electrical properties of Cu–7 wt.%Ag alloys , 2006 .

[15]  L. Schultz,et al.  Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu–Nb alloys , 2006 .

[16]  Jun Wang,et al.  Study on high-strength and high-conductivity Cu–Fe–P alloys , 2006 .

[17]  Marta López,et al.  Performance and characterization of dispersion strengthened Cu-TiB2 composite for electrical use , 2005 .

[18]  J. B. Correia,et al.  Production of copper-niobium carbide nanocomposite powders via mechanical alloying , 2005 .

[19]  H. Schneider-Muntau,et al.  Analytical modeling of the electrical conductivity of metal matrix composites: application to Ag–Cu and Cu–Nb , 2003 .

[20]  V. K. Kaushik,et al.  Reactive synthesis of titanium matrix composite powders , 2002 .

[21]  K. Zhao,et al.  Synthesis of nanocrystalline TiC powder by mechanical alloying , 2001 .

[22]  Sie Chin Tjong,et al.  Microstructural and mechanical characteristics of in situ metal matrix composites , 2000 .

[23]  V. Stolyarov,et al.  Processing nanocrystalline Ti and its nanocomposites from micrometer-sized Ti powder using high pressure torsion , 2000 .

[24]  G. Palumbo,et al.  Electrical Resistivity as a Characterization Tool for Nanocrystalline Metals , 1999 .

[25]  C. M. Sellars,et al.  Strengthening in rapidly solidified age hardened CuCr and CuCrZr alloys , 1997 .

[26]  Fathi Habashi,et al.  Handbook of extractive metallurgy , 1997 .

[27]  E. Gibson,et al.  The resistivity and microstructure of heavily drawn Cu‐Nb alloys , 1989 .

[28]  I. T. Young,et al.  Quantitative Microscopy , 1984, Definitions.

[29]  P. Andrews,et al.  The effect of grain boundaries on the electrical resistivity of polycrystalline copper and aluminium , 1969 .