A Computational Framework for Multivariate Convex Regression and Its Variants

ABSTRACT We study the nonparametric least squares estimator (LSE) of a multivariate convex regression function. The LSE, given as the solution to a quadratic program with O(n2) linear constraints (n being the sample size), is difficult to compute for large problems. Exploiting problem specific structure, we propose a scalable algorithmic framework based on the augmented Lagrangian method to compute the LSE. We develop a novel approach to obtain smooth convex approximations to the fitted (piecewise affine) convex LSE and provide formal bounds on the quality of approximation. When the number of samples is not too large compared to the dimension of the predictor, we propose a regularization scheme—Lipschitz convex regression—where we constrain the norm of the subgradients, and study the rates of convergence of the obtained LSE. Our algorithmic framework is simple and flexible and can be easily adapted to handle variants: estimation of a nondecreasing/nonincreasing convex/concave (with or without a Lipschitz bound) function. We perform numerical studies illustrating the scalability of the proposed algorithm—on some instances our proposal leads to more than a 10,000-fold improvement in runtime when compared to off-the-shelf interior point solvers for problems with n = 500.

[1]  H. D. Brunk,et al.  AN EMPIRICAL DISTRIBUTION FUNCTION FOR SAMPLING WITH INCOMPLETE INFORMATION , 1955 .

[2]  H. D. Brunk Maximum Likelihood Estimates of Monotone Parameters , 1955 .

[3]  Richard F. Meyer,et al.  The Consistent Assessment and Fairing of Preference Functions , 1968, IEEE Trans. Syst. Sci. Cybern..

[4]  E. Bronshtein ε-Entropy of convex sets and functions , 1976 .

[5]  H. Varian The Nonparametric Approach to Demand Analysis , 1982 .

[6]  H. Varian The Nonparametric Approach to Production Analysis , 1984 .

[7]  C. Michelot A finite algorithm for finding the projection of a point onto the canonical simplex of ∝n , 1986 .

[8]  Hari Mukerjee,et al.  Monotone Nonparametric Regression , 1988 .

[9]  Enno Mammen,et al.  Estimating a Smooth Monotone Regression Function , 1991 .

[10]  P. Tseng,et al.  On the convergence of the coordinate descent method for convex differentiable minimization , 1992 .

[11]  Rosa L. Matzkin Restrictions of economic theory in nonparametric methods , 1994 .

[12]  A. Yatchew,et al.  Nonparametric Regression Techniques in Economics , 1998 .

[13]  S. Geer Applications of empirical process theory , 2000 .

[14]  Marno Verbeek,et al.  A Guide to Modern Econometrics , 2000 .

[15]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[16]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[17]  Gad Allon,et al.  Nonparametric Estimation of Concave Production Technologies by Entropic Methods , 2005 .

[18]  Holger Dette,et al.  Estimating a Convex Function in Nonparametric Regression , 2007 .

[19]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[20]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[21]  Fadoua Balabdaoui Consistent estimation of a convex density at the origin , 2007 .

[22]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[23]  Timo Kuosmanen Representation Theorem for Convex Nonparametric Least Squares , 2008, Econometrics Journal.

[24]  M. Cule,et al.  Maximum likelihood estimation of a multi‐dimensional log‐concave density , 2008, 0804.3989.

[25]  A. Fiacco A Finite Algorithm for Finding the Projection of a Point onto the Canonical Simplex of R " , 2009 .

[26]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[27]  B. Minasny The Elements of Statistical Learning, Second Edition, Trevor Hastie, Robert Tishirani, Jerome Friedman. (2009), Springer Series in Statistics, ISBN 0172-7397, 745 pp , 2009 .

[28]  Jon A Wellner,et al.  NONPARAMETRIC ESTIMATION OF MULTIVARIATE CONVEX-TRANSFORMED DENSITIES. , 2009, Annals of statistics.

[29]  E. Seijo,et al.  Nonparametric Least Squares Estimation of a Multivariate Convex Regression Function , 2010, 1003.4765.

[30]  Pedro Morin,et al.  On uniform consistent estimators for convex regression , 2011 .

[31]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[32]  Jeffrey S. Racine,et al.  Nonparametric Kernel Regression with Multiple Predictors and Multiple Shape Constraints , 2012 .

[33]  Andrew L. Johnson,et al.  Estimating the shadow prices of SO2 and NOx for U.S. coal power plants: A convex nonparametric least squares approach , 2012 .

[34]  Necdet Serhat Aybat,et al.  A First-Order Augmented Lagrangian Method for Compressed Sensing , 2010, SIAM J. Optim..

[35]  Peter W. Glynn,et al.  Consistency of Multidimensional Convex Regression , 2012, Oper. Res..

[36]  Adityanand Guntuboyina,et al.  Covering Numbers for Convex Functions , 2012, IEEE Transactions on Information Theory.

[37]  Shouyang Wang,et al.  Estimating ά-frontier technical efficiency with shape-restricted kernel quantile regression , 2013, Neurocomputing.

[38]  David B. Dunson,et al.  Multivariate convex regression with adaptive partitioning , 2011, J. Mach. Learn. Res..

[39]  Eunji Lim,et al.  On Convergence Rates of Convex Regression in Multiple Dimensions , 2014, INFORMS J. Comput..

[40]  Zi Wang,et al.  A parallel method for large scale convex regression problems , 2014, 53rd IEEE Conference on Decision and Control.

[41]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[42]  András György,et al.  Near-optimal max-affine estimators for convex regression , 2015, AISTATS.

[43]  Bingsheng He,et al.  The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent , 2014, Mathematical Programming.

[44]  Zhi-Quan Luo,et al.  On the linear convergence of the alternating direction method of multipliers , 2012, Mathematical Programming.