Quantum model learning agent: characterisation of quantum systems through machine learning

Brian Flynn, 2, ∗ Antonio A. Gentile, 3, † Nathan Wiebe, 5, 6, ‡ Raffaele Santagati, 7, § and Anthony Laing ¶ Quantum Engineering Technology Labs, University of Bristol, BS8 1FD, Bristol, UK Quantum Engineering Centre for Doctoral Training, University of Bristol, Bristol BS8 1FD, UK Qu & Co BV, 1070 AW, Amsterdam, the Netherlands. Department of Computer Science, University of Toronto, Toronto, Canada Pacific Northwest National Laboratory, Richland, United States University of Washington, Seattle, United States Boehringer-Ingelheim Quantum Lab, Doktor-Boehringer-Gasse 5-11, 1120 Wien, Austria. (Dated: December 17, 2021)

[1]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[2]  Fabio Sciarrino,et al.  Machine Learning-Based Classification of Vector Vortex Beams. , 2020, Physical review letters.

[3]  Antje Engelhardt,et al.  Assessing dominance hierarchies: validation and advantages of progressive evaluation with Elo-rating , 2011, Animal Behaviour.

[4]  John G. Rarity,et al.  Error-protected qubits in a silicon photonic chip , 2020, Nature Physics.

[5]  Christopher Ferrie,et al.  How to best sample a periodic probability distribution, or on the accuracy of Hamiltonian finding strategies , 2013, Quantum Inf. Process..

[6]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[7]  François-Marie Le Régent,et al.  Quantum Divide and Compute: Hardware Demonstrations and Noisy Simulations , 2020, 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).

[8]  J. D. Wong-Campos,et al.  Benchmarking an 11-qubit quantum computer , 2019, Nature Communications.

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  R. Santagati,et al.  Online adaptive quantum characterization of a nuclear spin , 2021, npj Quantum Information.

[11]  Mehdi Soleimanifar,et al.  Sample-efficient learning of interacting quantum systems , 2021, Nature Physics.

[12]  Sheng-TaoWang,et al.  Hamiltonian tomography for quantum many-body systems with arbitrary couplings , 2015 .

[13]  Hartmut Neven,et al.  Learning Non-Markovian Quantum Noise from Moiré-Enhanced Swap Spectroscopy with Deep Evolutionary Algorithm , 2019, ArXiv.

[14]  Edward Grant,et al.  Machine learning logical gates for quantum error correction , 2019 .

[15]  Giovanni Acampora,et al.  An evolutionary strategy for finding effective quantum 2-body Hamiltonians of p-body interacting systems , 2019, Quantum Mach. Intell..

[16]  Kristan Temme,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2019, Nature.

[17]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[18]  A. Elo The rating of chessplayers, past and present , 1978 .

[19]  Eyal Bairey,et al.  Learning a Local Hamiltonian from Local Measurements. , 2018, Physical review letters.

[20]  Steven T. Flammia,et al.  Stochastic estimation of dynamical variables , 2018, Quantum Science and Technology.

[21]  Emmanuel Flurin,et al.  Using a Recurrent Neural Network to Reconstruct Quantum Dynamics of a Superconducting Qubit from Physical Observations , 2018, Physical Review X.

[22]  D. Cory,et al.  Hamiltonian learning and certification using quantum resources. , 2013, Physical review letters.

[23]  Andrey Kardashin,et al.  Machine Learning Phase Transitions with a Quantum Processor , 2019, Physical Review A.

[24]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[25]  Nathan Wiebe,et al.  Quantum Hamiltonian learning using imperfect quantum resources , 2013, 1311.5269.

[26]  S. Huber,et al.  Learning phase transitions by confusion , 2016, Nature Physics.

[27]  A. Zeilinger,et al.  Automated Search for new Quantum Experiments. , 2015, Physical review letters.

[28]  John G. Rarity,et al.  Learning models of quantum systems from experiments , 2020, Nature Physics.

[29]  Nathan Wiebe,et al.  Robust online Hamiltonian learning , 2012, TQC.

[30]  J. Rarity,et al.  Experimental quantum Hamiltonian learning , 2017, Nature Physics.

[31]  S. Flammia,et al.  Scalable Bayesian Hamiltonian learning , 2019, 1912.07636.

[32]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[33]  H. Neven,et al.  Quantum computation of molecular structure using data from challenging-to-classically-simulate nuclear magnetic resonance experiments. , 2021, PRX quantum : a Physical Review journal.

[34]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[35]  Sebastian Huber,et al.  Hamiltonian learning for quantum error correction , 2019, Physical Review Research.

[36]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[37]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[38]  Michael Chertkov,et al.  Optimal structure and parameter learning of Ising models , 2016, Science Advances.

[39]  Lars Magnus Hvattum,et al.  Using ELO ratings for match result prediction in association football , 2010 .

[40]  S. Huber,et al.  Scalable Hamiltonian learning for large-scale out-of-equilibrium quantum dynamics , 2021, Physical Review A.

[41]  Roger G. Melko,et al.  Machine-Learning Quantum States in the NISQ Era , 2019, Annual Review of Condensed Matter Physics.

[42]  C. K. Andersen,et al.  Quantum parameter estimation with a neural network , 2017, 1711.05238.

[43]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[44]  John G. Rarity,et al.  Magnetic-Field Learning Using a Single Electronic Spin in Diamond with One-Photon Readout at Room Temperature , 2018, Physical Review X.

[45]  Daniel Burgarth,et al.  Evolution-Free Hamiltonian Parameter Estimation through Zeeman Markers. , 2017, Physical review letters.