Ecological radiation with limited morphological diversification in salamanders

A major goal of evolutionary biology is to explain morphological diversity among species. Many studies suggest that much morphological variation is explained by adaptation to different microhabitats. Here, we test whether morphology and microhabitat use are related in plethodontid salamanders, which contain the majority of salamander species, and have radiated into a striking diversity of microhabitats. We obtained microhabitat data for 189 species that also had both morphometric and phylogenetic data. We then tested for associations between morphology and microhabitat categories using phylogenetic comparative methods. Associations between morphology and ecology in plethodontids are largely confined to a single clade within one subfamily (Bolitoglossinae), whereas variation in morphology across other plethodontids is unrelated to microhabitat categories. These results demonstrate that ecological radiation and morphological evolution can be largely decoupled in a major clade. The results also offer a striking contrast to lizards, which typically show close relationships between morphology and microhabitat.

[1]  Yuchi Zheng,et al.  Exploring patterns and extent of bias in estimating divergence time from mitochondrial DNA sequence data in a particular lineage: a case study of salamanders (order Caudata). , 2011, Molecular biology and evolution.

[2]  J. Ragle,et al.  IUCN Red List of Threatened Species , 2010 .

[3]  D. Adams,et al.  Ontogenetic convergence and evolution of foot morphology in European cave salamanders (Family: Plethodontidae) , 2010, BMC Evolutionary Biology.

[4]  D. Adams,et al.  Parallel evolution of character displacement driven by competitive selection in terrestrial salamanders , 2010, BMC Evolutionary Biology.

[5]  E. Armbrust,et al.  Genome size differentiates co-occurring populations of the planktonic diatom Ditylum brightwellii (Bacillariophyta) , 2010, BMC Evolutionary Biology.

[6]  D. Adams,et al.  Are rates of species diversification correlated with rates of morphological evolution? , 2009, Proceedings of the Royal Society B: Biological Sciences.

[7]  J. Wiens,et al.  Can Parallel Diversification Occur in Sympatry? Repeated Patterns of Body-Size Evolution in Coexisting Clades of North American Salamanders , 2009, Evolution; international journal of organic evolution.

[8]  D. Wake What Salamanders Have Taught Us About Evolution , 2009 .

[9]  J. Losos,et al.  Adaptive Radiation: Contrasting Theory with Data , 2009, Science.

[10]  J. Wiens,et al.  Digit reduction, body size, and paedomorphosis in salamanders , 2008, Evolution & development.

[11]  D. Wake,et al.  Developmental processes underlying the evolution of a derived foot morphology in salamanders , 2007, Proceedings of the National Academy of Sciences.

[12]  F. Bookstein,et al.  The conceptual and statistical relationship between modularity and morphological integration. , 2007, Systematic biology.

[13]  D. Wake,et al.  Phylogenetic history underlies elevational biodiversity patterns in tropical salamanders , 2007, Proceedings of the Royal Society B: Biological Sciences.

[14]  Joachim Selbig,et al.  pcaMethods - a bioconductor package providing PCA methods for incomplete data , 2007, Bioinform..

[15]  A. Meyer,et al.  GEOMETRIC MORPHOMETRIC ANALYSES PROVIDE EVIDENCE FOR THE ADAPTIVE CHARACTER OF THE TANGANYIKAN CICHLID FISH RADIATIONS , 2007, Evolution; international journal of organic evolution.

[16]  M. W. McCoy,et al.  Size correction: comparing morphological traits among populations and environments , 2006, Oecologia.

[17]  L. Harmon,et al.  PHYLOGENETIC ANALYSIS OF ECOMORPHOLOGICAL DIVERGENCE, COMMUNITY STRUCTURE, AND DIVERSIFICATION RATES IN DUSKY SALAMANDERS (PLETHODONTIDAE: DESMOGNATHUS) , 2005, Evolution; international journal of organic evolution.

[18]  D. Adams CHARACTER DISPLACEMENT VIA AGGRESSIVE INTERFERENCE IN APPALACHIAN SALAMANDERS , 2004 .

[19]  J. Losos,et al.  The relationship between morphology, escape behaviour and microhabitat occupation in the lizard clade Liolaemus (Iguanidae: Tropidurinae * : Liolaemini) , 2004, Journal of evolutionary biology.

[20]  K. Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[21]  J. Losos,et al.  PHYLOGENETIC ANALYSIS OF ECOLOGICAL AND MORPHOLOGICAL DIVERSIFICATION IN HISPANIOLAN TRUNK-GROUND ANOLES (ANOLIS CYBOTES GROUP) , 2003, Evolution; international journal of organic evolution.

[22]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[23]  J. Mendelson THE AMPHIBIANS OF HONDURAS , 2002, Copeia.

[24]  D. Irschick Evolutionary Approaches for Studying Functional Morphology: Examples from Studies of Performance Capacity1 , 2002, Integrative and comparative biology.

[25]  G. Turner The Ecology of Adaptive Radiation , 2001, Heredity.

[26]  Charles R. Brown,et al.  Ecology and Evolution of Darwin’s Finches , 2001, Heredity.

[27]  F. Rohlf,et al.  Ecological character displacement in Plethodon: biomechanical differences found from a geometric morphometric study. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Pagel The Maximum Likelihood Approach to Reconstructing Ancestral Character States of Discrete Characters on Phylogenies , 1999 .

[29]  J. Petranka,et al.  Salamanders of the United States and Canada , 1998 .

[30]  J. Losos,et al.  A COMPARATIVE ANALYSIS OF THE ECOLOGICAL SIGNIFICANCE OF MAXIMAL LOCOMOTOR PERFORMANCE IN CARIBBEAN ANOLIS LIZARDS , 1998, Evolution; international journal of organic evolution.

[31]  B. Jayne,et al.  Effects of incline on speed, acceleration, body posture and hindlimb kinematics in two species of lizard Callisaurus draconoides and Uma scoparia. , 1998, The Journal of experimental biology.

[32]  D. Schluter,et al.  LIKELIHOOD OF ANCESTOR STATES IN ADAPTIVE RADIATION , 1997, Evolution; international journal of organic evolution.

[33]  E. Jockusch GEOGRAPHIC VARIATION AND PHENOTYPIC PLASTICITY OF NUMBER OF TRUNK VERTEBRAE IN SLENDER SALAMANDERS, BATRACHOSEPS (CAUDATA: PLETHODONTIDAE) , 1997, Evolution; international journal of organic evolution.

[34]  L. Vitt,et al.  A COMPARISON OF EVOLUTIONARY RADIATIONS IN MAINLAND AND CARIBBEAN ANOLIS LIZARDS , 1997 .

[35]  L. Vitt,et al.  The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[36]  T. F. Hansen,et al.  Phylogenies and the Comparative Method: A General Approach to Incorporating Phylogenetic Information into the Analysis of Interspecific Data , 1997, The American Naturalist.

[37]  R. Alexander,et al.  Ecological morphology : integrative organismal biology , 1995 .

[38]  John J. Wiens,et al.  Herpetology an introductory biology of amphibians and reptiles , 1993 .

[39]  J. Losos THE EVOLUTION OF FORM AND FUNCTION: MORPHOLOGY AND LOCOMOTOR PERFORMANCE IN WEST INDIAN ANOLIS LIZARDS , 1990, Evolution; international journal of organic evolution.

[40]  Jonathan B. Losos,et al.  Ecomorphology, Performance Capability, and Scaling of West Indian Anolis Lizards: An Evolutionary Analysis , 1990 .

[41]  A. Grafen The phylogenetic regression. , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[42]  W. Rice ANALYZING TABLES OF STATISTICAL TESTS , 1989, Evolution; international journal of organic evolution.

[43]  D. Wake,et al.  Tongue Evolution in the Lungless Salamanders, Family Plethodontidae IV. Phylogeny of Plethodontid Salamanders and the Evolution of Feeding Dynamics , 1986 .

[44]  J. Mosimann,et al.  NEW STATISTICAL METHODS FOR ALLOMETRY WITH APPLICATION TO FLORIDA RED‐WINGED BLACKBIRDS , 1979, Evolution; international journal of organic evolution.

[45]  J. Mosimann Size Allometry: Size and Shape Variables with Characterizations of the Lognormal and Generalized Gamma Distributions , 1970 .

[46]  T. P. Burnaby Growth-Invariant Discriminant Functions and Generalized Distances , 1966 .

[47]  Pierre Jolicoeur,et al.  The multivariate generalization of the allometry equation , 1963 .

[48]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[49]  Luke J. Harmon,et al.  GEIGER: investigating evolutionary radiations , 2008, Bioinform..

[50]  J. Wiens,et al.  WHY DOES A TRAIT EVOLVE MULTIPLE TIMES WITHIN A CLADE? REPEATED EVOLUTION OF SNAKELIKE BODY FORM IN SQUAMATE REPTILES , 2006, Evolution; international journal of organic evolution.

[51]  D. Adams,et al.  CHARACTER DISPLACEMENT VIA AGGRESSIVE INTERFERENCE IN , 2004 .

[52]  R. V. Damme,et al.  Evolutionary relationships between body shape and habitat use in lacertid lizards , 1999 .

[53]  C. K. Dodd Postures associated with immobile woodland salamanders, genus Plethodon , 1990 .

[54]  D. Wake Adaptive Radiation of Salamanders in Middle American Cloud Forests , 1987 .

[55]  D. Wake Comparative osteology and evolution of the lungless salamanders , 1966 .