Patricia tries again revisited

The Patricia trie is a simple modification of a regular trie. By eliminating unary branching nodes, the Patricia achieves better performance than regular tries. However, the question is: how much on the average is the Patricia better? This paper offers a thorough answer to this question by considering some statistics of the number of nodes examined in a <italic>successful search</italic> and an <italic>unsuccessful search</italic> in the Patricia tries. It is shown that for the Patricia containing <italic>n</italic> records the average of the successful search length <italic>S<subscrpt>n</subscrpt></italic> asymptotically becomes 1/<italic>h</italic><subscrpt>1</subscrpt> · ln <italic>n</italic> + <italic>O</italic>(1), and the variance of <italic>S<subscrpt>n</subscrpt></italic> is either var <italic>S<subscrpt>n</subscrpt></italic> = <italic>c</italic> · ln <italic>n</italic> + <italic>0</italic>(1) for an asymmetric Patricia or var <italic>S<subscrpt>n</subscrpt></italic> = <italic>0</italic>(1) for a symmetric Patricia, where <italic>h</italic><subscrpt>1</subscrpt> is the entropy of the alphabet over which the Patricia is built and <italic>c</italic> is an explicit constant. Higher moments of <italic>S<subscrpt>n</subscrpt></italic> are also assessed. The number of nodes examined in an unsuccessful search <italic>U<subscrpt>n</subscrpt></italic> is studied only for binary symmetric Patricia tries. We prove that the <italic>m</italic>th moment of the unsuccessful search length <italic>EU<supscrpt>m</supscrpt><subscrpt>n</subscrpt></italic> satisfies lim<subscrpt><italic>n</italic>→∞</subscrpt> <italic>EU<supscrpt>m</supscrpt><subscrpt>n</subscrpt></italic>/log<supscrpt><italic>m</italic></supscrpt><subscrpt>2</subscrpt><italic>n</italic> = 1, and the variance of <italic>U<subscrpt>n</subscrpt></italic> is var <italic>U<subscrpt>n</subscrpt></italic> = 0.87907. These results suggest that Patricia tries are very well balanced trees in the sense that a random shape of Patriciatries resembles the shape of complete trees that are ultimately balanced trees.

[1]  Mireille Régnier,et al.  Limiting distributions for trie parameters , 1986 .

[2]  N. E. Nörlund,et al.  Mémoire sur les polynomes de bernoulli , 1922 .

[3]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[4]  Ronald Fagin,et al.  Extendible hashing—a fast access method for dynamic files , 1979, ACM Trans. Database Syst..

[5]  B. Berndt Ramanujan's Notebooks , 1985 .

[6]  Helmut Prodinger,et al.  Some Further Results on Digital Search Trees , 1986, ICALP.

[7]  B. Pittel Paths in a random digital tree: limiting distributions , 1986, Advances in Applied Probability.

[8]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[9]  Gaston H. Gonnet,et al.  Handbook of Algorithms , 1984 .

[10]  Journal of the Association for Computing Machinery , 1961, Nature.

[11]  Wojciech Szpankowski,et al.  Some Results on V-ary Asymmetric Tries , 1988, J. Algorithms.

[12]  Philippe Flajolet,et al.  The Complexity of Generating an Exponentially Distributed Variate , 1986, J. Algorithms.

[13]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[14]  Gaston H. Gonnet,et al.  Handbook Of Algorithms And Data Structures , 1984 .

[15]  W. Szpankowski Solution of a linear recurrence equation arising in the analysis of some algorithms , 1987 .

[16]  Philippe Flajolet,et al.  Digital Search Trees Revisited , 1986, SIAM J. Comput..

[17]  Wojciech Szpankowski,et al.  The Evaluation of an Alternative Sum With Applications to the Analysis of Some Data Structures , 1988, Inf. Process. Lett..

[18]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[19]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[20]  Wojciech Szpankowski,et al.  On a Recurrence Equation Arising in the Analysis of Conflict Resolution Algorithms , 1987 .

[21]  B. Pittel Asymptotical Growth of a Class of Random Trees , 1985 .

[22]  SzpankowskiWojciech Patricia tries again revisited , 1990 .