Dimensional matching of polycyclic aromatics with rectangular metallacycles: insertion modes determined by [C-H···π] interactions.

A family of Pd(II)/Pt(II) dinuclear receptors, designed to give a smooth increase in their cavity lengths (from 7.46-13.78 Å), is presented. Their inclusion complexes with a representative set of polycyclic aromatic substrates (naphthalene, carbazol, pyrene, and benzo[a]pyrene), were characterized and studied in aqueous solution and the solid state. By taking into account the dimensions of both receptors and substrates, an excellent complementarity was found between the size of the receptors and their ability to complex a given substrate. Furthermore, this dimensional matching results in specific binding modes depending on the ability of the guest to establish stabilizing [C-H···π] interactions with the host.

[1]  G. Jin,et al.  Size recognition and optical unloading of polyaromatic compounds based on a coordination box containing face-to-face olefin bonds , 2013 .

[2]  Rafael Gramage‐Doria,et al.  Metallated cavitands (calixarenes, resorcinarenes, cyclodextrins) with internal coordination sites , 2013 .

[3]  M. Ward,et al.  Functional behaviour from controlled self-assembly: challenges and prospects. , 2013, Chemical Society reviews.

[4]  J. C. Barnes,et al.  ExBox: a polycyclic aromatic hydrocarbon scavenger. , 2013, Journal of the American Chemical Society.

[5]  Marcos D. García,et al.  PdII and PtII Metal-Directed Self-Assembly of Supramolecular Structures Based on N-Monoalkyl-4,4'-Bipyridinium Derivatives , 2012 .

[6]  Yong Yang,et al.  Pillararenes, a new class of macrocycles for supramolecular chemistry. , 2012, Accounts of chemical research.

[7]  H. Schneider,et al.  Supramolecular complexation for environmental control. , 2012, Chemical Society reviews.

[8]  Lyle Isaacs,et al.  Acyclic cucurbit[n]uril molecular containers enhance the solubility and bioactivity of poorly soluble pharmaceuticals , 2012, Nature Chemistry.

[9]  L. Weng,et al.  Sunlight induced cycloaddition and host-guest property of self-assembled organometallic macrocycles based on a versatile building block. , 2012, Chemical communications.

[10]  Xiaoyong Lu,et al.  Cucurbituril chemistry: a tale of supramolecular success , 2012 .

[11]  Peter J Stang,et al.  Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. , 2011, Chemical reviews.

[12]  Marcos D. García,et al.  Self-assembly of new fluorescent Pd(II) and Pt(II) 2,7-diazapyrenium-based metallocycles and study of their inclusion complexes and [3]catenanes , 2011 .

[13]  Ming Jiang,et al.  Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. , 2011, Chemical Society reviews.

[14]  Marcos D. García,et al.  Complexation and extraction of PAHs to the aqueous phase with a dinuclear Pt(II) diazapyrenium-based metallacycle. , 2010, Chemistry.

[15]  D. Ramaiah,et al.  Functional cyclophanes: promising hosts for optical biomolecular recognition. , 2010, Chemical Society reviews.

[16]  G. Jin,et al.  Host-guest chemistry with bi- and tetra-nuclear macrocyclic metallasupramolecules. , 2010, Chemical communications.

[17]  J. F. Stoddart,et al.  Mechanically bonded macromolecules. , 2010, Chemical Society reviews.

[18]  Marcos D. García,et al.  Complexation of pyrene in aqueous solution with a self-assembled palladium metallocycle. , 2010, Organic letters.

[19]  C. Peinador,et al.  Expanding the cavity size: preparation of 2:1 inclusion complexes based on dinuclear square metallocycles. , 2009, The Journal of organic chemistry.

[20]  G. Jin,et al.  Extending rectangular metal-organic frameworks to the third dimension: discrete organometallic boxes for reversible trapping of halocarbons occurring with conservation of the lattice. , 2009, Angewandte Chemie.

[21]  Robert G. Bergman,et al.  Proton-mediated chemistry and catalysis in a self-assembled supramolecular host. , 2009, Accounts of chemical research.

[22]  M. Fujita,et al.  Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. , 2009, Angewandte Chemie.

[23]  Michito Yoshizawa,et al.  Funktionale molekulare Reaktionskolben: neuartige Eigenschaften und Reaktionen in diskreten, selbstorganisierten Wirtmolekülen , 2009 .

[24]  C. Peinador,et al.  Regioselective catenation of dinuclear palladium and platinum metallocycles promoted by pi...pi interactions. , 2009, Inorganic chemistry.

[25]  C. Peinador,et al.  Stereoselective self-assembly of atropoisomeric Pd(II) metallocycles induced by an aromatic guest. , 2008, Chemical communications.

[26]  C. Peinador,et al.  Self-assembly of 1:2 inclusion complexes between a metallocycle host and dihydroxyaromatic guests: a redox controlled complexation process. , 2008, Organic letters.

[27]  C. Peinador,et al.  New self-assembled dinuclear Pd(II) and Pt(II) metallomacrocycles of a 4,4′-bipyridin-1-ium ligand with an inner cavity , 2006 .

[28]  M. Fujita,et al.  Coordination assemblies from a Pd(II)-cornered square complex. , 2005, Accounts of chemical research.

[29]  K. N. Houk,et al.  Bindungsaffinitäten von Wirt‐Gast‐, Protein‐Ligand‐ und Protein‐Übergangszustands‐Komplexen , 2003 .

[30]  Andrew G. Leach,et al.  Binding affinities of host-guest, protein-ligand, and protein-transition-state complexes. , 2003, Angewandte Chemie.

[31]  A. Kaifer,et al.  Expanding cavitand chemistry: the preparation and characterization of [n]cavitands with n>=4. , 2001, Chemistry.

[32]  Louis J. Farrugia,et al.  WinGX suite for small-molecule single-crystal crystallography , 1999 .

[33]  Y. Inoue,et al.  Complexation Thermodynamics of Cyclodextrins. , 1998, Chemical reviews.

[34]  R. Breslow,et al.  Biomimetic Reactions Catalyzed by Cyclodextrins and Their Derivatives. , 1998, Chemical reviews.

[35]  M. Fujita,et al.  Spectroscopic Observation of Self-Assembly of a Macrocyclic Tetranuclear Complex Composed of Pt2+ and 4,4′-Bipyridine , 1991 .

[36]  F. Diederich,et al.  Complexation of Neutral Molecules by Cyclophane Hosts , 1988 .

[37]  François Diederich Cyclophane zur Komplexierung von Neutralmolekülen , 1988 .

[38]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[39]  Jean-Pierre Sauvage,et al.  Molecular catenanes, rotaxanes and knots : A journey through the world of molecular topology , 1999 .

[40]  W. Wardlaw,et al.  258. The supposed isomerism among the palladodiammines , 1932 .