Correlation between elastic structural behavior and yield strength of metallic glasses

[1]  Weihua Wang The elastic properties, elastic models and elastic perspectives of metallic glasses , 2012 .

[2]  J. Eckert,et al.  Deformation induced structural evolution in bulk metallic glasses , 2011 .

[3]  Tao Zhang,et al.  Quasi phase transition model of shear bands in metallic glasses , 2011 .

[4]  K. Liss,et al.  On the Atomic Anisotropy of Thermal Expansion in Bulk Metallic Glass , 2011 .

[5]  J. R. Morris,et al.  Viscosity, shear waves, and atomic-level stress-stress correlations. , 2011, Physical review letters.

[6]  C. Liu,et al.  Atomistic free-volume zones and inelastic deformation of metallic glasses. , 2010, Nature materials.

[7]  J. F. Löffler,et al.  Stick-slip behavior of serrated flow during inhomogeneous deformation of bulk metallic glasses , 2010 .

[8]  J. Almer,et al.  Elastic heterogeneity in metallic glasses. , 2010, Physical review letters.

[9]  J. Eckert,et al.  Atomic structure evolution in bulk metallic glass under compressive stress , 2009 .

[10]  J. Eckert,et al.  Structural evolution of Cu–Zr metallic glasses under tension , 2009 .

[11]  K. Lu,et al.  Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale , 2009, Science.

[12]  N. Denkov,et al.  Jamming in sheared foams and emulsions, explained by critical instability of the films between neighboring bubbles and drops. , 2009, Physical review letters.

[13]  X. D. Wang,et al.  Local strain behavior of bulk metallic glasses under tension studied by in situ x-ray diffraction , 2009 .

[14]  A. Stoica,et al.  Power-law scaling and fractal nature of medium-range order in metallic glasses. , 2009, Nature materials.

[15]  Mingwei Chen,et al.  Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses , 2008, Proceedings of the National Academy of Sciences.

[16]  J. Eckert,et al.  Strain distribution in Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass investigated by in situ tensile tests under synchrotron radiation , 2008 .

[17]  Mingwei Chen,et al.  Mechanical Behavior of Metallic Glasses: Microscopic Understanding of Strength and Ductility , 2008 .

[18]  K. Trachenko The Vogel-Fulcher-Tammann law in the elastic theory of glass transition , 2007, 0704.2975.

[19]  J. Eckert,et al.  Plasticity in bulk metallic glasses investigated via the strain distribution , 2007 .

[20]  John J. Lewandowski,et al.  Mechanical Properties of Bulk Metallic Glasses , 2007 .

[21]  K. Trachenko Slow dynamics and stress relaxation in a liquid as an elastic medium , 2006, cond-mat/0611648.

[22]  Weihua Wang,et al.  Structural evolution in TiCu-based bulk metallic glass with large compressive plasticity , 2006 .

[23]  M. Falk,et al.  Medium range order and the radial distribution function , 2006 .

[24]  J. Bai,et al.  Atomic packing and short-to-medium-range order in metallic glasses , 2006, Nature.

[25]  J. Lewandowski,et al.  Temperature rise at shear bands in metallic glasses , 2006 .

[26]  H. Poulsen,et al.  Measuring strain distributions in amorphous materials , 2004 .

[27]  J. Eckert,et al.  Difference in compressive and tensile fracture mechanisms of Zr59CU20Al10Ni8Ti3 bulk metallic glass , 2003 .

[28]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .

[29]  G. A. Martynov Fundamental Theory of Liquids, Method of Distribution Functions , 1992 .

[30]  Suzuki,et al.  Bond-orientational anisotropy in metallic glasses observed by x-ray diffraction. , 1987, Physical review. B, Condensed matter.

[31]  Hung Chen REVIEW ARTICLE: Glassy metals , 1980 .

[32]  A. Argon Plastic deformation in metallic glasses , 1979 .

[33]  Frans Spaepen,et al.  A microscopic mechanism for steady state inhomogeneous flow in metallic glasses , 1977 .

[34]  Martin Goldstein,et al.  Viscous Liquids and the Glass Transition: A Potential Energy Barrier Picture , 1969 .