Some results about the pseudospectral approximation of one-dimensional fourth-order problems

SummaryWe analyze the pseudospectral approximation of fourth order problems. We give convergence results in the one dimensional case. Numerical experiments are shown in two dimensions for the approximation of the rhombic plate bending problem. Eigenvalues and preconditioning are also investigated.

[1]  Michel Deville,et al.  Chebyshev 3-D spectral and 2-D pseudospectral solvers for the Helmholtz equation , 1984 .

[2]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[3]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[4]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[5]  L. Morley BENDING OF A SIMPLY SUPPORTED RHOMBIC PLATE UNDER UNIFORM NORMAL LOADING , 1961 .

[6]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[7]  D. Evelyne Thèse de doctorat d'Etat , 1988 .

[8]  I. Babuska,et al.  Benchmark computation and performance evaluation for a rhombic plate bending problem , 1989 .

[9]  David Gottlieb,et al.  The Spectrum of the Chebyshev Collocation Operator for the Heat Equation , 1983 .

[10]  John Robinson,et al.  An evaluation of plate bending elements : MSC/NASTRAN, ASAS, PAFEC, ANSYS and SAP4 , 1981 .

[11]  Ivo Babuška,et al.  Regularity of the solution of elliptic problems with piecewise analytic data. Part 1. Boundary value problems for linear elliptic equation of second order , 1988 .

[12]  D. Funaro Some Results About the Spectrum of the Chebyshev Differencing Operator , 1987 .

[13]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[14]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[15]  L. Kantorovich,et al.  Functional analysis in normed spaces , 1952 .

[16]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[17]  Daniele Funaro,et al.  A Preconditioning Matrix for the Chebyshev Differencing Operator , 1987 .