Structural and Functional Analysis of a β2-Adrenergic Receptor Complex with GRK5

[1]  G C P van Zundert,et al.  The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. , 2016, Journal of molecular biology.

[2]  J. Cheung,et al.  Crystal Structure of G Protein-coupled Receptor Kinase 5 in Complex with a Rationally Designed Inhibitor*♦ , 2015, The Journal of Biological Chemistry.

[3]  J. Benovic,et al.  Atomic Structure of GRK5 Reveals Distinct Structural Features Novel for G Protein-coupled Receptor Kinases*♦ , 2015, The Journal of Biological Chemistry.

[4]  A. Roitberg,et al.  Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. , 2015, Journal of chemical theory and computation.

[5]  Hideaki E. Kato,et al.  Effective Application of Bicelles for Conformational Analysis of G Protein-Coupled Receptors by Hydrogen/Deuterium Exchange Mass Spectrometry , 2015, Journal of The American Society for Mass Spectrometry.

[6]  Garth J. Williams,et al.  Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser , 2014, Nature.

[7]  G. Skiniotis,et al.  2D Projection Analysis of GPCR Complexes by Negative Stain Electron Microscopy. , 2015, Methods in molecular biology.

[8]  J. Tesmer,et al.  Structural insights into G protein-coupled receptor kinase function. , 2014, Current opinion in cell biology.

[9]  K. Garcia,et al.  Adrenaline-activated structure of the β2-adrenoceptor stabilized by an engineered nanobody , 2013, Nature.

[10]  Daniel R Roe,et al.  PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. , 2013, Journal of chemical theory and computation.

[11]  Wen-Hsin Lee,et al.  Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody , 2013 .

[12]  Alexander D. MacKerell,et al.  Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. , 2012, Journal of chemical theory and computation.

[13]  Alexandre M J J Bonvin,et al.  Clustering biomolecular complexes by residue contacts similarity , 2012, Proteins.

[14]  Pawel A Penczek,et al.  Iterative stable alignment and clustering of 2D transmission electron microscope images. , 2012, Structure.

[15]  Ryan T. Strachan,et al.  Distinct Phosphorylation Sites on the β2-Adrenergic Receptor Establish a Barcode That Encodes Differential Functions of β-Arrestin , 2011, Science Signaling.

[16]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[17]  K. Palczewski,et al.  Activation of G protein-coupled receptor kinase 1 involves interactions between its N-terminal region and its kinase domain. , 2011, Biochemistry.

[18]  J. Rappsilber The beginning of a beautiful friendship: Cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes , 2011, Journal of structural biology.

[19]  P. Singh,et al.  Molecular basis for activation of G protein‐coupled receptor kinases , 2010, The EMBO journal.

[20]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[21]  J. Benovic,et al.  Role of the amino terminus of G protein-coupled receptor kinase 2 in receptor phosphorylation. , 2009, Biochemistry.

[22]  Xavier Deupi,et al.  The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex , 2009, Proceedings of the National Academy of Sciences.

[23]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[24]  Richard N. Zare,et al.  A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein , 2007, Proceedings of the National Academy of Sciences.

[25]  R. Lefkowitz,et al.  Seven transmembrane receptors: something old, something new , 2007, Acta physiologica.

[26]  A. Sali,et al.  Statistical potential for assessment and prediction of protein structures , 2006, Protein science : a publication of the Protein Society.

[27]  Xavier Deupi,et al.  Coupling ligand structure to specific conformational switches in the β2-adrenoceptor , 2006, Nature chemical biology.

[28]  S. Taylor,et al.  Dynamics of cAMP-dependent protein kinase. , 2001, Chemical reviews.

[29]  W Chiu,et al.  EMAN: semiautomated software for high-resolution single-particle reconstructions. , 1999, Journal of structural biology.

[30]  G. Vriend,et al.  Prediction of protein conformational freedom from distance constraints , 1997, Proteins.

[31]  S. Taylor,et al.  Role of the Glycine Triad in the ATP-binding Site of cAMP-dependent Protein Kinase* , 1997, The Journal of Biological Chemistry.

[32]  R. Stoffel,et al.  Phosphatidylinositol 4,5-Bisphosphate (PIP2)-enhanced G Protein-coupled Receptor Kinase (GRK) Activity: LOCATION, STRUCTURE, AND REGULATION OF THE PIP2 BINDING SITE DISTINGUISHES THE GRK SUBFAMILIES* , 1996, The Journal of Biological Chemistry.

[33]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[34]  E. Weiss,et al.  Rhodopsin Mutants Discriminate Sites Important for the Activation of Rhodopsin Kinase and G(*) , 1995, The Journal of Biological Chemistry.

[35]  J. Zheng,et al.  Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. , 1991, Science.

[36]  M. Levitt,et al.  Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. , 1985, Journal of molecular biology.