Reduction of interface phonon modes using metal-semiconductor heterostructures

Based on a simplified analysis of perfectly conducting metals, it has been suggested qualitatively that establishing metal‐semiconductor interfaces at the heterojunctions of polar semiconductor quantum wells introduces a set of boundary conditions that dramatically reduces or eliminates unwanted carrier energy loss caused by interactions with interface longitudinal‐optical (LO) phonon modes. In this article, it is theoretically demonstrated that comparable reductions in LO phonon scattering strengths may be achieved for metal‐semiconductor structures with metal having realistic conductivities and Thomas–Fermi screening lengths.

[1]  Kim,et al.  Polarization eigenvectors of surface-optical phonon modes in a rectangular quantum wire. , 1990, Physical review. B, Condensed matter.

[2]  J. J. Licari,et al.  Electron-phonon interaction in a dielectric slab: Effect of the electronic polarizability , 1977 .

[3]  Turley,et al.  Electronic wave functions and electron-confined-phonon matrix elements in GaAs/AlxGa1-xAs double-barrier resonant-tunneling structures. , 1991, Physical review. B, Condensed matter.

[4]  Paolo Lugli,et al.  Electron-phonon interactions in two-dimensional systems: a microscopic approach , 1992 .

[5]  V. G. Keramidas,et al.  Negative differential resistance in AlAs/NiAl/AlAs heterostructures: Evidence for size quantization in metals , 1988 .

[6]  J. Shannon Reducing the effective height of a Schottky barrier using low‐energy ion implantation , 1974 .

[7]  J. Caulet,et al.  Growth of Ni3Ga2, NiGa and Ni2Ga3 on GaAs (001) and (111) in a molecular beam epitaxy system , 1989 .

[8]  Mitra Dutta,et al.  Dramatic reduction in the longitudinal-optical phonon emission rate in polar-semiconductor quantum wires , 1992 .

[9]  Reed,et al.  Nanostructures and mesoscopic systems , 1992 .

[10]  V. G. Keramidas,et al.  Molecular beam epitaxial growth of ultrathin buried metal layers: (Al,Ga)As/NiAl/(Al,Ga)As heterostructures , 1988 .

[11]  Karl Hess,et al.  On the possibility of transistor action based on quantum interference phenomena , 1989 .

[12]  Vladimir Mitin,et al.  Electron‐optical‐phonon scattering rates in a rectangular semiconductor quantum wire , 1991 .

[13]  H. Kroemer,et al.  An (Al,Ga)As/GaAs heterostructure bipolar transistor with nonalloyed graded-gap ohmic contacts to the base and emitter , 1987, IEEE Electron Device Letters.

[14]  Macucci,et al.  Circular bends in electron waveguides. , 1990, Physical review. B, Condensed matter.

[15]  L. Brillson,et al.  New method for control of Schottky‐barrier height , 1981 .

[16]  Mori,et al.  Electron-optical-phonon interaction in single and double heterostructures. , 1989, Physical review. B, Condensed matter.

[17]  W. K. Chan,et al.  MBE growth of AlGaAs/NiAl/AlGaAs heterostructures: A novel epitaxial III–V semiconductor/metal system , 1989 .

[18]  Gerald J. Iafrate,et al.  Transition from longitudinal‐optical phonon scattering to surface‐optical phonon scattering in polar semiconductor superlattices , 1991 .

[19]  T. Jackson,et al.  Ohmic contacts to n‐GaAs using graded band gap layers of Ga1−xInxAs grown by molecular beam epitaxy , 1981 .

[20]  Michael A. Stroscio,et al.  Electron‐optical‐phonon interaction in binary/ternary heterostructures , 1990 .

[21]  Morkoç,et al.  Electron-optical-phonon interactions in ultrathin GaAs/AlAs multiple quantum wells. , 1991, Physical review letters.