The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent

The paper deals with the genericity of domain-dependent spectral properties of the Laplacian-Dirichlet operator. In particular we prove that, generically, the squares of the eigenfunctions form a free family. We also show that the spectrum is generically non-resonant. The results are obtained by applying global perturbations of the domains and exploiting analytic perturbation properties. The work is motivated by two applications: an existence result for the problem of maximizing the rate of exponential decay of a damped membrane and an approximate controllability result for the bilinear Schrodinger equation.

[1]  T. J. Mahar,et al.  Sturm–liouville eigenvalue problems in which the squares of the eigenfunctions are linearly dependent , 1980 .

[2]  Enrique Zuazua,et al.  Approximate controllability of a hydro-elastic coupled system , 1996 .

[3]  Y. C. Verdière Sur une hypothèse de transversalité d’Arnold , 1988 .

[4]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[5]  Mikhail Teytel,et al.  How rare are multiple eigenvalues , 1999 .

[6]  Mario Sigalotti,et al.  Controllability of the discrete-spectrum Schrödinger equation driven by an external field , 2008, 0801.4893.

[7]  Anna Maria Micheletti Perturbazione dello spettro dell'operatore di Laplace, in relazione ad una variazione del campo , 1972 .

[8]  M. Slemrod,et al.  Controllability of distributed bilinear systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[9]  Jerrold E. Marsden,et al.  Controllability for Distributed Bilinear Systems , 1982 .

[10]  D. Bucur Characterization of the shape stability for nonlinear elliptic problems , 2006 .

[11]  Karine Beauchard,et al.  Spectral controllability for 2D and 3D linear Schrödinger equations , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[12]  J. H. Albert,et al.  Genericity of simple eigenvalues for elliptic PDE’s , 1975 .

[13]  M. Garavello,et al.  On conditions that prevent steady-state controllability of certain linear partial differential equations , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[14]  Jacques Simon,et al.  Etude de Problème d'Optimal Design , 1975, Optimization Techniques.

[15]  Anna Maria Micheletti Metrica per famiglie di domini limitati e proprietà generiche degli autovalori , 1972 .

[16]  Chris Judge,et al.  Generic spectral simplicity of polygons , 2007 .

[17]  Jean-Pierre Raymond,et al.  ESAIM: Control, Optimisation and Calculus of Variations , 1999 .

[18]  Tosio Kato Perturbation theory for linear operators , 1966 .

[19]  Enrique Zuazua,et al.  Generic simplicity of the eigenvalues of the Stokes system in two space dimensions , 2001 .

[20]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[21]  Pascal Hébrard,et al.  Optimal shape and position of the actuators for the stabilization of a string , 2003, Syst. Control. Lett..

[22]  Karen K. Uhlenbeck Generic Properties of Eigenfunctions , 1976 .

[23]  Antoine Henrot,et al.  Variation et optimisation de formes , 2005 .

[24]  J. Zolésio,et al.  Introduction to shape optimization : shape sensitivity analysis , 1992 .

[25]  Enrique Zuazua,et al.  Generic Simplicity of the Spectrum and Stabilization for a Plate Equation , 2000, SIAM J. Control. Optim..

[26]  Vladimir I. Arnold,et al.  Modes and quasimodes , 1972 .

[27]  E. Zuazua,et al.  The rate at which energy decays in a damped String , 1994 .

[28]  Enrique Zuazua,et al.  Addendum to "Generic Simplicity of the Spectrum and Stabilization for a Plate Equation" , 2003, SIAM J. Control. Optim..

[29]  W. Arendt,et al.  Uniform convergence for elliptic problems on varying domains , 2007 .

[30]  Antoine Henrot,et al.  A Spillover Phenomenon in the Optimal Location of Actuators , 2005, SIAM J. Control. Optim..

[31]  P. H. Müller,et al.  T. Kato, Perturbation theory for linear operators. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band 132) XX + 592 S. m. 3 Fig. Berlin/Heidelberg/New York Springer-Verlag. Preis geb. DM 79,20 , 1967 .

[32]  Andrei A. Agrachev,et al.  Controllability on the group of diffeomorphisms , 2009 .