The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent
暂无分享,去创建一个
[1] T. J. Mahar,et al. Sturm–liouville eigenvalue problems in which the squares of the eigenfunctions are linearly dependent , 1980 .
[2] Enrique Zuazua,et al. Approximate controllability of a hydro-elastic coupled system , 1996 .
[3] Y. C. Verdière. Sur une hypothèse de transversalité d’Arnold , 1988 .
[4] Eduardo D. Sontag,et al. Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .
[5] Mikhail Teytel,et al. How rare are multiple eigenvalues , 1999 .
[6] Mario Sigalotti,et al. Controllability of the discrete-spectrum Schrödinger equation driven by an external field , 2008, 0801.4893.
[7] Anna Maria Micheletti. Perturbazione dello spettro dell'operatore di Laplace, in relazione ad una variazione del campo , 1972 .
[8] M. Slemrod,et al. Controllability of distributed bilinear systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.
[9] Jerrold E. Marsden,et al. Controllability for Distributed Bilinear Systems , 1982 .
[10] D. Bucur. Characterization of the shape stability for nonlinear elliptic problems , 2006 .
[11] Karine Beauchard,et al. Spectral controllability for 2D and 3D linear Schrödinger equations , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.
[12] J. H. Albert,et al. Genericity of simple eigenvalues for elliptic PDE’s , 1975 .
[13] M. Garavello,et al. On conditions that prevent steady-state controllability of certain linear partial differential equations , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[14] Jacques Simon,et al. Etude de Problème d'Optimal Design , 1975, Optimization Techniques.
[15] Anna Maria Micheletti. Metrica per famiglie di domini limitati e proprietà generiche degli autovalori , 1972 .
[16] Chris Judge,et al. Generic spectral simplicity of polygons , 2007 .
[17] Jean-Pierre Raymond,et al. ESAIM: Control, Optimisation and Calculus of Variations , 1999 .
[18] Tosio Kato. Perturbation theory for linear operators , 1966 .
[19] Enrique Zuazua,et al. Generic simplicity of the eigenvalues of the Stokes system in two space dimensions , 2001 .
[20] Jan Sokolowski,et al. Introduction to shape optimization , 1992 .
[21] Pascal Hébrard,et al. Optimal shape and position of the actuators for the stabilization of a string , 2003, Syst. Control. Lett..
[22] Karen K. Uhlenbeck. Generic Properties of Eigenfunctions , 1976 .
[23] Antoine Henrot,et al. Variation et optimisation de formes , 2005 .
[24] J. Zolésio,et al. Introduction to shape optimization : shape sensitivity analysis , 1992 .
[25] Enrique Zuazua,et al. Generic Simplicity of the Spectrum and Stabilization for a Plate Equation , 2000, SIAM J. Control. Optim..
[26] Vladimir I. Arnold,et al. Modes and quasimodes , 1972 .
[27] E. Zuazua,et al. The rate at which energy decays in a damped String , 1994 .
[28] Enrique Zuazua,et al. Addendum to "Generic Simplicity of the Spectrum and Stabilization for a Plate Equation" , 2003, SIAM J. Control. Optim..
[29] W. Arendt,et al. Uniform convergence for elliptic problems on varying domains , 2007 .
[30] Antoine Henrot,et al. A Spillover Phenomenon in the Optimal Location of Actuators , 2005, SIAM J. Control. Optim..
[31] P. H. Müller,et al. T. Kato, Perturbation theory for linear operators. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band 132) XX + 592 S. m. 3 Fig. Berlin/Heidelberg/New York Springer-Verlag. Preis geb. DM 79,20 , 1967 .
[32] Andrei A. Agrachev,et al. Controllability on the group of diffeomorphisms , 2009 .