Robust shrinkage estimation for elliptically symmetric distributions with unknown covariance matrix
暂无分享,去创建一个
Martin T. Wells | Dominique Fourdrinier | William E. Strawderman | M. Wells | W. Strawderman | D. Fourdrinier | Dominique Fourdrinier
[1] Fourdrinier Dominique,et al. ESTIMATION OF THE MEAN OF A e1-EXPONENTIAL MULTIVARIATE DISTRIBUTION , 2000 .
[2] M. Bilodeau,et al. Theory of multivariate statistics , 1999 .
[3] A Paradox Concerning Shrinkage Estimators , 1996 .
[4] D. Cellier,et al. Shrinkage Estimators under Spherical Symmetry for the General Linear Model , 1995 .
[5] C. Stein,et al. Estimation with Quadratic Loss , 1992 .
[6] S. Kotz,et al. Symmetric Multivariate and Related Distributions , 1989 .
[7] Muni S. Srivastava,et al. Stein estimation under elliptical distributions , 1989 .
[8] L. R. Haff,et al. A CLASS OF MINIMAX ESTIMATORS OF A NORMAL MEAN VECTOR FOR ARBITRARY QUADRATIC LOSS AND UNKNOWN COVARIANCE MATRIX , 1983 .
[9] C. Stein. Estimation of the Mean of a Multivariate Normal Distribution , 1981 .
[10] L. R. Haff. An identity for the Wishart distribution with applications , 1979 .
[11] L. Gleser. Minimax Estimation of a Normal Mean Vector When the Covariance Matrix is Unknown , 1979 .
[12] L. Brown,et al. Minimax Estimation of a Normal Mean Vector for Arbitrary Quadratic Loss and Unknown Covariance Matrix , 1977 .
[13] James O. Berger,et al. Combining Independent Normal Mean Estimation Problems with Unknown Variances , 1976 .
[14] H. Fédérer. Geometric Measure Theory , 1969 .