Congruence Testing of Point Sets in 4 Dimensions

Congruence between two n-point sets in 4 dimension can be checked in O(n log n) time. On the way to establishing this result, we revisit several parts of 4-dimensional geometry, such as angles and distances between planes, Hopf fibrations, and Coxeter groups.

[1]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[2]  Kurt Mehlhorn,et al.  Congruence, similarity, and symmetries of geometric objects , 1987, SCG '87.

[3]  G. M.,et al.  Geometry of Four Dimensions , 1915, Nature.

[4]  H. Seifert,et al.  Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes , 1931 .

[5]  H. Manning Geometry of four dimensions , 1915 .

[6]  Günter Rote,et al.  Congruence Testing of Point Sets in 4-Space , 2016, Symposium on Computational Geometry.

[7]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[8]  Kokichi Sugihara,et al.  An n log n Algorithm for Determining the Congruity of Polyhedra , 1984, J. Comput. Syst. Sci..

[9]  Peter T. Highnam,et al.  Optimal Algorithms for Finding the Symmetries of a Planar Point Set , 1986, Inf. Process. Lett..

[10]  Hugh Williams,et al.  On quaternions and octonions: Their geometry, arithmetic, and symmetry, by John H. Conway and Derek A. Smith. Pp. 159. $29. 2003. ISBN 1 5688 134 9 (A. K. Peters). , 2004, The Mathematical Gazette.

[11]  Robert E. Tarjan,et al.  A V log V Algorithm for Isomorphism of Triconnected Planar Graphs , 1973, J. Comput. Syst. Sci..

[12]  Michael Ian Shamos,et al.  Divide-and-conquer in multidimensional space , 1976, STOC '76.

[13]  N. J. A. Sloane,et al.  Packing Lines, Planes, etc.: Packings in Grassmannian Spaces , 1996, Exp. Math..

[14]  Y. Wong Differential geometry of grassmann manifolds. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[15]  L. J. Boya,et al.  On Regular Polytopes , 2012, 1210.0601.

[16]  Kurt Mehlhorn,et al.  Congruence, similarity, and symmetries of geometric objects , 1987, SCG '87.

[17]  H. Seifert,et al.  Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes (Schluß) , 1931 .

[18]  Christian Knauer,et al.  Testing the congruence of d-dimensional point sets , 2000, SCG '00.

[19]  Günter Rote,et al.  Congruence Testing of Point Sets in Three and Four Dimensions - Results and Techniques , 2015, MACIS.

[20]  Donald E. Knuth,et al.  Fast Pattern Matching in Strings , 1977, SIAM J. Comput..

[21]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[22]  Mikhail J. Atallah,et al.  On Symmetry Detection , 1985, IEEE Transactions on Computers.

[23]  John H. Conway,et al.  On Quaternions and Octonions , 2003 .

[24]  Gene H. Golub,et al.  Numerical methods for computing angles between linear subspaces , 1971, Milestones in Matrix Computation.

[25]  G. E. Martin Transformation Geometry: An Introduction to Symmetry , 1982 .

[26]  Glenn K. Manacher,et al.  An Application of Pattern Matching to a Problem in Geometrical Complexity , 1976, Inf. Process. Lett..

[27]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[28]  W. Fenchel,et al.  Über Krümmung und Windung geschlossener Raumkurven , 1929 .

[29]  Daniel Asimov,et al.  The grand tour: a tool for viewing multidimensional data , 1985 .

[30]  Sebastian Iwanowski Testing Approximate Symmetry in the Plane is NP-hard , 1989, MFCS.

[31]  Tatsuya Akutsu On determining the congruence of point sets in d dimensions , 1998, Comput. Geom..

[32]  G. Dixon,et al.  On quaternions and octonions: Their geometry, arithmetic, and symmetry , 2004 .

[33]  Maureen T. Carroll Geometry , 2017 .

[34]  Mike D. Atkinson,et al.  An Optimal Algorithm for Geometrical Congruence , 1987, J. Algorithms.

[35]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[36]  D. Huson,et al.  Periodic Delone Tilings , 1997 .

[37]  Felix Klein,et al.  Vorlesungen über nicht-euklidische Geometrie , 1928 .