LQG/LTR procedure using reduced-order Kalman filters

ABSTRACT This paper discusses a linear-quadratic-Gaussian/loop transfer recovery (LQG/LTR) procedure using reduced-order Kalman filters by extending known exact-recovery result. The state-space realisation commonly used for reduced-order observer design is employed. The zero structure intrinsic to the realisation is revealed. Asymptotic recovery is achieved using a non-singular reduced-order Kalman filter with a parameterised set of covariance matrices. The proposed procedure provides a systematic method for directly designing reduced-order LQG controllers without additional coordinate transformations. A numerical design example for a simple multivariable plant is presented to compare the proposed design with the standard LQG/LTR design using a full-order Kalman filter.

[1]  Ben M. Chen,et al.  Loop Transfer Recovery , 1993 .

[2]  Uri Shaked,et al.  The LQG optimal regulation problem for systems with perfect measurements: explicit solution, properties, and application to practical designs , 1988 .

[3]  N. Karcanias,et al.  Poles and zeros of linear multivariable systems : a survey of the algebraic, geometric and complex-variable theory , 1976 .

[4]  J. Stoustrup,et al.  Loop Transfer Recovery: Analysis and Design- , 1997, Proceedings of the IEEE.

[5]  G. Stein,et al.  Multivariable feedback design: Concepts for a classical/modern synthesis , 1981 .

[6]  B. Friedland On the properties of reduced-order Kalman filters , 1987, 26th IEEE Conference on Decision and Control.

[7]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[8]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[9]  H. Kwakernaak,et al.  The maximally achievable accuracy of linear optimal regulators and linear optimal filters , 1972 .

[10]  Lige Xia,et al.  Loop Recovery and Robust State Estimate Feedback Designs , 1986, 1986 American Control Conference.

[11]  Anthony J. Calise,et al.  Adaptive Loop Transfer Recovery , 2012 .

[12]  Uri Shaked,et al.  The properties of reduced-order minimum-variance filters for systems with partially perfect measurements , 1988 .

[13]  G. Stein,et al.  The LQG/LTR procedure for multivariable feedback control design , 1987 .

[14]  B. Francis The optimal linear-quadratic time-invariant regulator with cheap control , 1979 .

[15]  Jim Freudenberg,et al.  Loop transfer recovery for nonminimum phase plants , 1990 .

[16]  Luis Henrique de Carvalho Ferreira,et al.  An Easy-to-Use $ {\cal H}_{\infty }$/LTR Control Solution With Mixed-Sensitivity Properties , 2011, IEEE Transactions on Automatic Control.

[17]  R. W. Wilde,et al.  Observers for linear systems with unknown inputs , 1988 .

[18]  A. Madiwale,et al.  Some Extensions of Loop Transfer Recovery , 1985, 1985 American Control Conference.

[19]  D. Luenberger An introduction to observers , 1971 .

[20]  Kevin A. Wise,et al.  Flight Control Design Using Observer-based Loop Transfer Recovery , 2013 .

[21]  Robert R. Bitmead,et al.  Adaptive optimal control , 1990 .

[22]  H.J. Guo,et al.  LTR Design of Integral Controllers for Time-Delay Plants Using Disturbance Cancellation , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[23]  Jemin George On adaptive loop transfer recovery using Kalman filter-based disturbance accommodating control , 2014 .

[24]  Hidenori Kimura,et al.  Perfect and subperfect regulation in linear multivariable control systems , 1981, Autom..

[25]  Pierre Apkarian,et al.  An extension of the linear quadratic Gaussian-loop transfer recovery procedure , 2012 .

[26]  Hai-Jiao Guo,et al.  Design of optimal disturbance cancellation controllers via modified loop transfer recovery , 2015 .

[27]  Tadashi Ishihara,et al.  LTR design of disturbance cancellation integral controllers for time-delay plants , 2008, Int. J. Control.

[28]  G. Stein,et al.  Robustness with observers , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[29]  Hai-Jiao Guo,et al.  Integral controller design based on disturbance cancellation: Partial LTR approach for non-minimum phase plants , 2005, Autom..