Hamilton-Jacobi Equations on Networks as Limits of Singularly Perturbed Problems in Optimal Control: Dimension Reduction

We consider a family of star-shaped planar domains Ωϵ, made of N non intersecting semi-infinite strips of thickness ϵ and of a central region whose diameter is proportional to ϵ. As ϵ → 0, Ωϵ tends to a network 𝒢 made of half-lines sharing an endpoint O. We study infinite horizon optimal control problems in which the state is constrained to remain in . We prove that the value function tends to the solution of a Hamilton-Jacobi equation on 𝒢, with an effective transmission condition at O. The effective equation is linked to an optimal control problem.

[1]  Fabio Bagagiolo,et al.  Singular Perturbation of a Finite Horizon Problem with State-Space Constraints , 1998 .

[2]  G. Barles Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations: a guided visit , 1993 .

[3]  R. Monneau,et al.  The vertex test function for Hamilton-Jacobi equations on networks , 2013 .

[4]  Mauro Garavello,et al.  Traffic flow on networks : conservation laws models , 2006 .

[5]  A. Leizarowitz,et al.  Limit Occupational Measures Set for a Control System and Averaging of Singularly Perturbed Control Systems , 1999 .

[6]  Martino Bardi,et al.  Viscosity Solutions Methods for Singular Perturbations in Deterministic and Stochastic Control , 2001, SIAM J. Control. Optim..

[7]  Mauro Garavello,et al.  Traffic Flow on Networks , 2006 .

[8]  Fabio Camilli,et al.  A comparison among various notions of viscosity solutions for Hamilton-Jacobi equations on networks , 2013 .

[9]  Yves Achdou,et al.  HAMILTON-JACOBI EQUATIONS FOR OPTIMAL CONTROL ON JUNCTIONS AND NETWORKS ∗, ∗∗ , 2015 .

[10]  Martino Bardi,et al.  MULTISCALE SINGULAR PERTURBATIONS AND HOMOGENIZATION OF OPTIMAL CONTROL PROBLEMS , 2007 .

[11]  P. Souganidis,et al.  A pde approach to small stochastic perturbations of Hamiltonian flows , 2012 .

[12]  Eszter Sikolya,et al.  Vertex control of flows in networks , 2008, Networks Heterog. Media.

[13]  M. Bardi,et al.  Singular Perturbations of Nonlinear Degenerate Parabolic PDEs: a General Convergence Result , 2003 .

[14]  E. Barron,et al.  Semicontinuous Viscosity Solutions For Hamilton–Jacobi Equations With Convex Hamiltonians , 1990 .

[15]  A. Bensoussan Perturbation Methods in Optimal Control , 1988 .

[16]  L. Evans The perturbed test function method for viscosity solutions of nonlinear PDE , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[17]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[18]  Hasnaa Zidani,et al.  A Hamilton-Jacobi approach to junction problems and application to traffic flows , 2011, 1107.3250.

[19]  Z. Artstein,et al.  The Value Function of Singularly Perturbed Control Systems , 2000 .

[20]  Guy Barles,et al.  A Bellman approach for two-domains optimal control problems in R N , 2011, 1112.3727.

[21]  Guy Barles,et al.  A Bellman Approach for Regional Optimal Control Problems in RN , 2013, SIAM J. Control. Optim..

[22]  Yves Achdou,et al.  Hamilton–Jacobi equations constrained on networks , 2013 .

[23]  Fabio Camilli,et al.  Viscosity solutions of Eikonal equations on topological networks , 2011 .

[24]  H. Ishii A Short Introduction to Viscosity Solutions and the Large Time Behavior of Solutions of Hamilton–Jacobi Equations , 2013 .

[25]  Martino Bardi,et al.  Multiscale problems and homogenization for second-order Hamilton-Jacobi equations , 2007 .