Efficient solution of a partial integro-differential equation in finance

Jump-diffusion models for the pricing of derivatives lead under certain assumptions to partial integro-differential equations (PIDE). Such a PIDE typically involves a convection term and a non-local integral. We transform the PIDE to eliminate the convection term, discretize it implicitly, and use finite differences on a uniform grid. The resulting dense linear system exhibits so much structure that it can be solved very efficiently by a circulant preconditioned conjugate gradient method. Therefore, this fully implicit scheme requires only on the order of O(nlogn) operations. Second order accuracy is obtained numerically on the whole computational domain for Merton's model.

[1]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[2]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[3]  M. Tismenetsky,et al.  A decomposition of Toeplitz matrices and optimal circulant preconditioning , 1991 .

[4]  Eugene E. Tyrtyshnikov,et al.  Optimal and Superoptimal Circulant Preconditioners , 1992, SIAM J. Matrix Anal. Appl..

[5]  Michael K. Ng Iterative Methods for Toeplitz Systems (Numerical Mathematics and Scientific Computation) , 2004 .

[6]  P. Wilmott Derivatives: The Theory and Practice of Financial Engineering , 1998 .

[7]  M. Ng Iterative Methods for Toeplitz Systems , 2004 .

[8]  R. H. Chan The spectrum of a family of circulant preconditioned Toeplitz systems , 1989 .

[9]  Raymond H. Chan,et al.  The spectra of super-optimal circulant preconditioned Toeplitz systems , 1991 .

[10]  G. Russo,et al.  Implicit–explicit numerical schemes for jump–diffusion processes , 2007 .

[11]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[12]  R. Chan,et al.  The circulant operator in the banach algebra of matrices , 1991 .

[13]  Christoph Schwab,et al.  Fast deterministic pricing of options on Lévy driven assets , 2002 .

[14]  C. Schwab,et al.  Wavelet Galerkin pricing of American options on Lévy driven assets , 2005 .

[15]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[16]  Jesper Andreasen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Pricing , 1999 .

[17]  Gene H. Golub,et al.  Matrix computations , 1983 .

[18]  Thomas Huckle,et al.  Iterative methods for Toeplitz-like matrices , 1994 .

[19]  P. Forsyth,et al.  Robust numerical methods for contingent claims under jump diffusion processes , 2005 .

[20]  G. Strang A proposal for toeplitz matrix calculations , 1986 .

[21]  Cornelis W. Oosterlee,et al.  Numerical valuation of options with jumps in the underlying , 2005 .

[22]  Raymond H. Chan,et al.  Circulant preconditioners for Toeplitz matrices with piecewise continuous generating functions , 1992 .

[23]  T. Chan Pricing contingent claims on stocks driven by Lévy processes , 1999 .

[24]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[25]  Thomas Huckle,et al.  Some Aspects of Circulant Preconditioners , 1993, SIAM J. Sci. Comput..

[26]  Christoph Schwab,et al.  Fast Numerical Solution of Parabolic Integrodifferential Equations with Applications in Finance , 2005, SIAM J. Sci. Comput..

[27]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[28]  Rama Cont,et al.  A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models , 2005, SIAM J. Numer. Anal..

[29]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[30]  George Labahn,et al.  A penalty method for American options with jump diffusion processes , 2004, Numerische Mathematik.

[31]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[32]  Maya Briani,et al.  Numerical methods for option pricing in jump-diffusion markets , 2003 .