Efficient solution of a partial integro-differential equation in finance
暂无分享,去创建一个
[1] T. Chan. An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .
[2] David S. Bates. Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .
[3] M. Tismenetsky,et al. A decomposition of Toeplitz matrices and optimal circulant preconditioning , 1991 .
[4] Eugene E. Tyrtyshnikov,et al. Optimal and Superoptimal Circulant Preconditioners , 1992, SIAM J. Matrix Anal. Appl..
[5] Michael K. Ng. Iterative Methods for Toeplitz Systems (Numerical Mathematics and Scientific Computation) , 2004 .
[6] P. Wilmott. Derivatives: The Theory and Practice of Financial Engineering , 1998 .
[7] M. Ng. Iterative Methods for Toeplitz Systems , 2004 .
[8] R. H. Chan. The spectrum of a family of circulant preconditioned Toeplitz systems , 1989 .
[9] Raymond H. Chan,et al. The spectra of super-optimal circulant preconditioned Toeplitz systems , 1991 .
[10] G. Russo,et al. Implicit–explicit numerical schemes for jump–diffusion processes , 2007 .
[11] Alan G. White,et al. The Pricing of Options on Assets with Stochastic Volatilities , 1987 .
[12] R. Chan,et al. The circulant operator in the banach algebra of matrices , 1991 .
[13] Christoph Schwab,et al. Fast deterministic pricing of options on Lévy driven assets , 2002 .
[14] C. Schwab,et al. Wavelet Galerkin pricing of American options on Lévy driven assets , 2005 .
[15] Steven Kou,et al. A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..
[16] Jesper Andreasen,et al. Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Pricing , 1999 .
[17] Gene H. Golub,et al. Matrix computations , 1983 .
[18] Thomas Huckle,et al. Iterative methods for Toeplitz-like matrices , 1994 .
[19] P. Forsyth,et al. Robust numerical methods for contingent claims under jump diffusion processes , 2005 .
[20] G. Strang. A proposal for toeplitz matrix calculations , 1986 .
[21] Cornelis W. Oosterlee,et al. Numerical valuation of options with jumps in the underlying , 2005 .
[22] Raymond H. Chan,et al. Circulant preconditioners for Toeplitz matrices with piecewise continuous generating functions , 1992 .
[23] T. Chan. Pricing contingent claims on stocks driven by Lévy processes , 1999 .
[24] S. Heston. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .
[25] Thomas Huckle,et al. Some Aspects of Circulant Preconditioners , 1993, SIAM J. Sci. Comput..
[26] Christoph Schwab,et al. Fast Numerical Solution of Parabolic Integrodifferential Equations with Applications in Finance , 2005, SIAM J. Sci. Comput..
[27] U. Grenander,et al. Toeplitz Forms And Their Applications , 1958 .
[28] Rama Cont,et al. A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models , 2005, SIAM J. Numer. Anal..
[29] R. C. Merton,et al. Option pricing when underlying stock returns are discontinuous , 1976 .
[30] George Labahn,et al. A penalty method for American options with jump diffusion processes , 2004, Numerische Mathematik.
[31] F. Black,et al. The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.
[32] Maya Briani,et al. Numerical methods for option pricing in jump-diffusion markets , 2003 .