Towards Robust High Performance Word Sense Disambiguation of English Verbs Using Rich Linguistic Features

This paper shows that our WSD system using rich linguistic features achieved high accuracy in the classification of English SENSEVAL2 verbs for both fine-grained (64.6%) and coarse-grained (73.7%) senses. We describe three specific enhancements to our treatment of rich linguistic features and present their separate and combined contributions to our system's performance. Further experiments showed that our system had robust performance on test data without high quality rich features.

[1]  Ann Bies,et al.  The Penn Treebank: Annotating Predicate Argument Structure , 1994, HLT.

[2]  Martha Palmer,et al.  Investigations into the role of lexical semantics in word sense disambiguation , 2004 .

[3]  Hwee Tou Ng,et al.  An Empirical Evaluation of Knowledge Sources and Learning Algorithms for Word Sense Disambiguation , 2002, EMNLP.

[4]  Eneko Agirre,et al.  Syntactic Features for High Precision Word Sense Disambiguation , 2002, COLING.

[5]  Richard M. Schwartz,et al.  An Algorithm that Learns What's in a Name , 1999, Machine Learning.

[6]  Daniel M. Bikel,et al.  Design of a multi-lingual, parallel-processing statistical parsing engine , 2002 .

[7]  Scott Cotton,et al.  SENSEVAL-2: Overview , 2001, *SEMEVAL.

[8]  Rada Mihalcea,et al.  SenseLearner: Word Sense Disambiguation for All Words in Unrestricted Text , 2005, ACL.

[9]  Rada Mihalcea,et al.  SenseLearner: Minimally supervised Word Sense Disambiguation for all words in open text , 2004, SENSEVAL@ACL.

[10]  Adam L. Berger,et al.  A Maximum Entropy Approach to Natural Language Processing , 1996, CL.

[11]  Dekang Lin,et al.  Using Syntactic Dependency as Local Context to Resolve Word Sense Ambiguity , 1997, ACL.

[12]  Olga Babko-Malaya,et al.  Different Sense Granularities for Different Applications , 2004, HLT-NAACL 2004.

[13]  Stanley F. Chen,et al.  A Gaussian Prior for Smoothing Maximum Entropy Models , 1999 .

[14]  Mitchell P. Marcus,et al.  Maximum entropy models for natural language ambiguity resolution , 1998 .

[15]  David Yarowsky,et al.  The Johns Hopkins SENSEVAL2 system descriptions , 2001 .

[16]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[17]  Martha Palmer,et al.  Combining Contextual Features for Word Sense Disambiguation , 2002, SENSEVAL.

[18]  Mitchell P. Marcus,et al.  Adding Semantic Annotation to the Penn TreeBank , 1998 .

[19]  Shalom Lappin,et al.  An Algorithm for Pronominal Anaphora Resolution , 1994, CL.

[20]  Paul Buitelaar Reducing Lexical Semantic Complexity with Systematic Polysemous Classes and Underspecification , 2000 .

[21]  John Tait,et al.  Word sense disambiguation in information retrieval revisited , 2003, SIGIR.

[22]  Mark Sanderson,et al.  Word sense disambiguation and information retrieval , 1994, SIGIR '94.